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    For my mother, Dorothy, on her 90th birthday. 
 Many more and much love, always.  
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   I have lived within the Cross Timbers for 10 years, observing its many changes. It 
did not take me long to realize that many of the processes maintaining this eco-
tone—between eastern deciduous forest and tallgrass prairie—may also control 
how trees invaded the ecotone de fi ned after abandonment from agriculture in New 
Jersey, USA which was the subject of my Ph.D dissertation and included in my  fi rst 
book. Not only were many of the dominant species and genera the same (e.g., 
 Quercus  spp.,  Ulmus  spp.,  Rubus  spp.,  Juniperius virginiana ) but the ecotonal 
dynamics itself could be looked at as an interplay between the process of tree inva-
sion on the forest side of the ecotone and those processes that present barriers to that 
invasion on the prairie side. Consequently I could combine my previous knowledge 
of the biology and ecology of many of the trees, shrubs, forbs, and grasses with 
re fi ned  fi eld experimentation, to investigate this Cross Timbers ecotone and set the 
stage for this new book. I have been fortunate to work with these generous col-
leagues at Oklahoma State University (OSU): Drs. John Weir, Stephen Hallgren, 
Edwardo Lorenzi, and Chris Stansberry at OSU—Stillwater, and Drs. Edward Vezey 
and Armando Cruz-Rodz at OSU—Oklahoma City. 

   Oklahoma City,  OK , USA  Randall   W.   Myster                 

   Preface 
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1R.W. Myster (ed.), Ecotones Between Forest and Grassland, 
DOI 10.1007/978-1-4614-3797-0_1, © Springer Science+Business Media New York 2012

    1.1   Rationale 

 The Oxford English Dictionary (OED: www.oed.com) de fi nes an ecotone as 
“A transitional area between two or more distinct ecological communities” and 
gives the etymology of both “eco” and “tone” as deriving from ancient Greek. The 
OED goes on to give this  fi rst usage by Clements  (  1904  ) :

  Zonation in a habitat… The line that connects the points of accumulated or abrupt change 
in the symmetry is a stress line or  ecotone … Ecotones are well marked between formations, 
particularly where the medium changes: they are less distinct within formations. It is obvi-
ous that an ecotone separates two different series of zones in the one case, and merely two 
distinct zones in the other.   

 Whereas terrestrial vegetation can be organized into large-scale biomes com-
posed of species having common adaptations to conditions within each biome 
(Walter  1979  ) , ecotones are still today thought of as dynamic border regions of 
abrupt transition between communities, ecosystems or biomes (Holland et al.  1991 ; 
Gosz  1993  ) . Ecotones can have a major in fl uence on those bordering ecosystems 
(e.g., material  fl ow: Cadenasso et al.  2003  )  and indicate both local and global 
changes (Hufkens et al.  2009  ) . As major components of landscapes, ecotones can 
(1) move unidirectionally through time although the rate may be variable (direc-
tional ecotones), (2) have no net change over relatively long periods but with move-
ment of patches across the ecotone for a period of time (shifting ecotones), or (3) be 
relatively stable over scales of decades with little movement from one biome into 
another (stationary ecotones: Peters et al.  2006  ) . 

 The dynamics of all three of these kinds of ecotones are controlled by the relative 
importance of abiotic drivers (e.g., climate), positive (e.g., facilitation) and negative 

    R.  W.   Myster   (*)
     Department of Biology, Oklahoma State University ,  Oklahoma State University ,   
Oklahoma City ,  OK   73107 ,  USA    
e-mail:  rwmyster@gmail.com   

    Chapter 1   
 Introduction          

    Randall   W.   Myster                
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(e.g., competition) biotic feedback mechanisms, inherent abiotic constraints (e.g., 
parent material), and abiotic feedback mechanisms (e.g., organic matter accumula-
tion: Peters et al.  2006  ) . Ecotones can arise naturally, such as at a lakeshore, or they 
can be the product of human activity, such as clearing a forest to create an agricul-
tural  fi eld (Myster  2007a  ) . While ecotones can retain some characteristics of the 
ecosystems on either side, they often have their own unique properties such as phys-
iognomic change, the existence of a vegetational mosaic, ecotonal species not found 
in the adjacent communities, and a spatial mass effect (Walker et al.  2003  ) . Among 
these traits, the pronounced, sharp spatial change in vegetation compared to the 
bordering plant communities is often of greatest interest to ecologists. 

 Just as there are many kinds of ecosystems and communities, there are many 
kinds of ecotones such as forest/grassland, grassland/desert, tundra/forest, forest/
marsh, land/fresh water, land/salt water, ground water/surface water, and forest 
riparian zones. As humans increasingly disturb and fragment the landscape in the 
future, ecotones will become even more common and important to the dynamics of 
the ecosystems on either side, rede fi ning their boundaries and in fl uencing their 
structure and function. 

 As past studies have shown, and as the chapters in this book will illustrate, an 
ecotone’s structure, size, and scope can change considerable over the millennia, 
expanding and shrinking as other conditions also change. For example, today’s eco-
tones are changing at a rate not seen for many years with woody plants increasingly 
invading grasslands worldwide (Scholes and Archer  1997  ) . Indeed many believe 
that current climate change and temperature increases are major “drivers” determin-
ing those changes because ecotones are more sensitive to climate change than the 
biomes on either side, perhaps due to them being located at sharp climatic and/or 
species range boundaries. If so then ecotones can serve as early indicators of pend-
ing climate change before it is detected elsewhere (Kupfer and Cairns  1996 ; Allen 
and Breshears  1998  ) . In this regard, the middle Holocene (approximately 8,000–
4,000 year  bp ) may be a useful analog for current and future global warming. In 
addition to these direct effects of warming, climate change may also affect ecotones 
by altering the frequency of disturbances, e.g.,  fi re and the strong wind events of 
Hurricanes and Tornados (Myster and Malahy  2010  ) . Finally ecotones are impor-
tant because they direct evolution and speciation (Simonetta  1990  ) , helping to gen-
erate biodiversity worldwide (Smith et al.  1997  ) . 

 Various techniques have been developed for the analysis of spatial and temporal 
patterns of ecotones (Hufkens et al.  2009  )  which will also be explored in this book. 
In addition to the importance of the patterns themselves, patterns are of interest 
because they may suggest the underlying mechanisms, tolerances, and processes 
that cause them, for example,  fi re, precipitation, grazing, solar radiation, tempera-
ture, wind disturbance, soil resources, canopy cover, litter, pathogens, crop signa-
tures (Myster  1993,   2007a  ) , livestock effects, seed rain, and species invasion which 
produce both the ecotone itself and those alterations in species distributions and 
other structures that de fi ne the ecosystems on either side. Furthermore, any of these 
ecotonal mechanisms, tolerances, or processes can involve negative feedbacks 
within the ecotone and positive feedbacks in the ecosystems on both sides (Stevens 
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and Fox  1991  ) . For example, plant-soil feedbacks can be either positive or negative, 
mediated by nematods and fungal pathogens (Peltzer  2001  ) . Such information can 
have great utility for mangers who wish to restore and/or maintain biomes and 
their ecotones. 

 Many of the most common and most studied ecotones involve transitions between 
woody and nonwoody vegetation, often between forests and various kinds of grass-
lands (Butler et al.  2009 ; Holtmeier  2009  )  where tree–grass interactions are key to 
their dynamics (Scholes and Archer  1997  ) . Whether the forests are tropical, temper-
ate, or boreal, grasslands are often found naturally at their borders due to, for exam-
ple, precipitation levels where trees can no longer maintain a positive carbon balance 
(Cairns and Malanson  1998  ) . Tropical forests are often bordered by savannas 
(Hoffmann et al.  2004  )  and llanos (Marchant et al.  2006  ) , temperate forests by prai-
ries (Nelson and Hu  2008  ) , steppes (Dulamsuren et al.  2008  )  and pampas (Mazia 
et al.  2001  ) , and boreal forests by mires/bogs (Anschlag et al.  2008  ) , tundra 
(Jia et al.  2006  ) , and both alpine and temperate grasslands (Bergengren et al.  2001  ) . 

 To fully understand forest-grassland ecotone dynamics, many approaches are 
needed. As the chapters in the book will illustrate, these include (1) forest and grass-
land sampling of both the current vegetation, soils and other ecosystem parameters 
but also those of the past, (2)  fi eld experimentation, and (3) modeling. In all these 
approaches, I suggest that the focus be on the process of tree invasion (Myster  1993, 
  2010  )  rather than the process of grass invasion because investigations need to be 
individualistic and it is dif fi cult to identify individual grass plants in the  fi eld. This 
basic structural issue places strong limits on what can be easily known in other 
grassland studies, often forcing them to focus on the grassland community and eco-
system rather than on individual grass plants and grass populations (see chapters in 
Knapp et al.  1998  ) . 

 Over the past few decades, a number of conceptual models have been proposed 
for plant community dynamics. These have been reviewed (e.g., Czaran and Bartha 
 1992 ; McCook  1994 ; Chave et al.  2002 ; Lortie et al.  2004 ; Myster  2012a ) and 
 various shortcomings have been discussed. I suggest these additional issues need to 
be incorporated into future plant community models: while (1) some models have 
included a spatial context, the real spaces that plants occupy and in fl uence—and/or 
are in fl uenced by—need to be added, (2) some models have included one-to-one 
plant replacements, the actual replacement dynamic should also include one-to-
many, many-to-one and even one or many-to-none, and (3) the controls of these 
replacements have been vaguely discussed, they need to be strictly de fi ned in terms 
of mechanisms and tolerances. This is assuming that plants already occupy spaces 
(i.e., it is not primary succession like found in landslides: Myster and Walker  1997  ) , 
otherwise it would be a tree invasion and establishment without replacement. 

 Since plants are sessile organisms, and thus space is intimately related to how 
they grow and reproduce (e.g., Myster  2003 ; Myster and Pickett  1992b ; Van 
Gardingen et al.  1997  ) , I suggest that the best plant community models contain for 
each individual plant both a “neighborhood-space”—outside its plant body where it 
interacts with the environment through mechanisms and tolerances (sensu Turkington 
and Harper  1979  ) —and a “phyto-space” which is made up of both its necromass 
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and its biomass. While I agree with some past models that the  fl uid and continuous 
process of plant–plant replacement is at the core of plant community dynamics 
which generates all higher-level plant community patterns (Fig.  1.1 : Busing  1996 ; 
Myster  2007b  ) , I would focus mainly on replacements at the seed/seedling stage of 
the plant life cycle (Grubb  1977  )  where the neighborhood spaces and phyto-spaces 
of the seeds and seedlings “free-up” and are often reoccupied over time as replace-
ments proceed.  

 I differ with past community models fundamentally, however, that conceptualize 
these spaces as equal among individual plants and, thus, present all replacements as 
one-to-one. In fact most replacements actually involve (1) a single individual plant 
being replaced by several other plants, (2) several plants being replaced by a single 
individual plant (common during succession: Myster  2007a  ) , and/or (3) a plant or 
plants replaced by the growth of the still living plants which surround it (e.g., the 
thinning phase of forest stand development: Yoda et al.  1963  ) . This complexity of 
the replacements can be seen by analysis of long-term permanent vegetation plots 
(see Myster  1993,   2007b  and references therein). 

 I agree with those models that give replacements as caused by mechanisms and 
tolerances, but suggest that the niche (Gause  1934  )  of a plant species’ does not pre-
exist in communities “waiting to be  fi lled” but instead is build from the responses of 
the individual plants of that species (Pickett and Bazzaz  1978 ; Parrish and Bazzaz 

Tree population patterns at
the forest-grassland ecotone

Mechanisms and
tolerances acting on trees

Tree-plant 
replacements 

Tree responses that can be
used to build tree species niches

Tree phyto-spaces and
neighborhood-spaces 

  Fig. 1.1    A conceptual model of tree population dynamics at the ecotone between forest and grass-
land. Mechanisms and tolerances operating on individual trees lead to responses (e.g., survivor-
ship, growth, allocation, architecture) which create spaces both within and without trees which 
change as trees are replaced by other plants (which can include other trees), creating tree popula-
tion patterns. The new plants that compose those patterns are then acted on by mechanisms and 
tolerances as the cycle continues       
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 1982 ; Burton and Bazzaz  1991  ) . Finally I suggest that an individual plant responds 
to a  mechanism  when it interacts directly with another living thing (e.g., dispersal, 
predation, pathogenic disease, herbivory) but  tolerates  a nonliving part of the envi-
ronment by either responding to it directly (e.g., germination) or indirectly through 
another living thing (e.g., competition: Myster  2012b ). As a plant ful fi lls its life 
cycles over time, these two spaces (phyto, neighborhood) change in response to the 
plant’s genes and to the continuing reaction to mechanisms and tolerances. 
Eventually every plant will die. At which point, the neighborhood space will be 
available to other plants immediately, but for the phyto-space this will depend on 
local decomposition rates. 

 Taken together then I am suggesting that the best way to investigate forest-
grassland ecotone patterns is to focus on these aspects of tree population dynamics 
(Mazia et al.  2001  ) : (1) how mechanisms and tolerances affect tree seeds and seed-
lings producing responses, (2) how spaces both within and without these tree indi-
viduals change as a result, and (3) how those changes lead to trees replacing (or not 
replacing) grasses and forbs.  

    1.2   Case Study: The Cross Timbers 

 In the United States, a broad transitional boundary between the eastern deciduous 
forest and the tallgrass prairie of the southern Great Plains makes up a large and 
important ecotone called the Cross Timbers (Fig.  1.2 : Dyksterhuis  1948 ; Engle 
et al.  1991 ; Johnson et al.  1972 ; Kroh and Nisbet  1983 ; Risser  1995  ) . At one time, 
the Cross timbers may have covered nearly 8,000,000 ha (Kuchler  1964  )  from cen-
tral Texas into eastern Kansas with most of it in Oklahoma (Duck and Flecher  1945  ) . 
Humans have lived in the Cross Timbers for at least 7,000 years where Native 
Americans changed the Cross Timbers through hunting (including  fi re), gathering, 
 fi shing, and settlement (Francaviglia  2000 ). After white settlement much of the 
Cross Timbers was burned and then used for agriculture leaving today mostly sec-
ondary forest in those places where closed-canopy forest exists (Pogue and Schnell 
 2001  ) , although small remnants of primary- or old-growth forest remain (Fig.  1.2 : 
Therrell and Stahle  1998 ; Grif fi n et al.  2005  ).   

 Today the Cross Timbers ecotone is a mosaic characterized by patches of oak 
( Quercus  sp.) dominated closed-canopy eastern deciduous forest, patches of tall-
grass prairie, and patches containing large clones of shrubs (e.g.,  Rhus copallina ) 
with a mix of small trees, grasses, and forbs (Arevalo  2002  ) . Forest patches coalesce 
and increase in size as you move east across the Cross Timbers and/or into lower-
lying, wetter areas. Likewise prairie patches coalesce and increase in size as you 
move west across the Cross Timbers and/or into higher, dryer areas (author, pers. 
obs). Shrubs and small trees are found in patches not dominated by forest or prairie 
species. Consequently, grass litter (Myster  2006  ) , herbivory (Myster  2011  ) , and 
competition (Weatherford and Myster  2011a,   b ; Myster  2012b ) may be very impor-
tant in controlling this ecotone. 
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 The most dominant oaks are blackjack oak ( Quercus marilandica ) and post oak 
( Quercus stellata:  Arevalo  2002  ) , but Shumard oak ( Quercus shumardii ), bur oak 
( Quercus macrocarpa ) and chinquapin oak ( Quercus muhlenbergii ) are also com-
mon (Petranka and McPherson  1979 ; Hoagland et al.  1999 ; Clark and Hallgren 
 2003  ) . Other trees include red bud ( Cercis canadensis  L.), species of hickory ( Carya  
sp. L.), slippery elm ( Ulmus rubra  Muhl.) and american elm ( Ulmus americana  L.). 
Understory trees, which may also associate with shrubs, include dogwood ( Cornus 
drummondii  C. A. Mey), red cedar ( Juniperus virginiana  L.), and mexican plum 
( Prunus mexicana  S. Wats.). Dominant grasses include indiangrass ( Sorghastrum 
nutans ), little bluestem ( Schizachyrium scoparium ), switchgrass ( Panicum virgatum  
L.) and big bluestem ( Andropogon gerardii : Hoagland et al.  1999  ) , and common 
forbs are milkweed ( Ascelepias  sp.), leadplant ( Amorpha  sp.), and various asters 
(Francaviglia  2000  ) . Also within the Cross Timbers are streams where you  fi nd 

  Fig. 1.2    Location of the Cross Timbers ecotone, between eastern deciduous broadleaf forest and 
tallgrass prairie in Oklahoma, Texas, Kansas, and Arkansas USA (reprinted with permission from 
D. W. Stahle, Tree-Ring laboratory, University of Arkansas)       
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riparian trees such as willow ( Salix nigra ), cottonwood ( Populus deltoids ), hackberry 
( Celtis occidentalis ), and pecan ( Carya illinoensis ). 

 Upland areas in the Cross Timbers have coarse textured soils derived from sand-
stone parent material and grassland areas tend to have  fi ner textured soils (Johnson 
et al.  1972  )  but all soils have low fertility (Therrell and Stahle  1998  ) . Furthermore, 
soils in the eastern part of the Cross Timbers have more sand and are more acidic, 
compared to the western areas (Francaviglia  2000  ) . Temperatures range between 38 
and −18 °C and annual precipitation ranges between 60 and 90 cm per year occurring 
mainly during the spring and summer (Hoagland et al.  1999 ; Francaviglia  2000  ) . 

 I found at a Cross Timbers area near Lake Carl Blackwell (36 ¢  47″N, 96 ¢  25″W) 
that the average percentage of tree seed left in forest, prairie, and mixed patches after 
9 days was 40% (Myster  in press , similar to Haught and Myster  2008  ) . Wind-
dispersed white ash ( Fraxinus americana ) had more predation in the prairie patches 
compared to forest and shrub. American elm ( U. americana ) showed the opposite 
trend. For the bird-dispersed hackberry ( C. occidentalis ) and dogwood ( C. drum-
mondii ), there was also more predation in the prairie and shrub patches compared to 
the forest. The bird-dispersed red cedar ( J. virginiana ) suffered little predation any-
where. Finally all three mammal-dispersed tree species, two Oaks ( Q .  stellata , 
 Q .  marilandica ) and the pecan ( C. illinoensis ) showed the most predation in the forest 
and shrub patches compared to the prairie. In addition to these mechanistic results 
helping to  fi ll out these tree niches and helping us understand tree replacement in 
this ecotone, seed predation may also alter  fi re intensity by removing biomass. 

 Also at Lake Carl Blackwell, 29% of tree seedlings set out in grass, red cedar, 
oak forest, and shrub microsites were alive after 1 year, mainly when protected from 
herbivores (Myster  2009b  ) . Eastern redbud ( C. canadensis ), osage orange ( Maclura 
pomifera ), and lacebark elm ( Ulmus parrifolia ) all survived over 30%, rough-leaf 
dogwood ( C. drummondii ) at 25% and shumard oak ( Q. shumardii ) only at 5%. 
For those that survived, elm seedlings grew the fastest among all the test species but 
was hindered in the shrub patches with osage orange also growing well especially 
in grass patches (Myster  2009b  ) . Another experiment at Lake Carl Blackwell found 
that Shumard Oak ( Q. shumardii ) seedlings without below-ground competition sur-
vived twice as much as those with it, seedlings in unburned areas survived up to four 
times more than those in burned areas, reduced below-ground competition lead to 
twice as much growth, and watering and placement under a shrub also lead to a 
twofold increase in growth (Myster  2009a  ) . 

 In addition to the killing of oak and other tree seedlings,  fi re can facilitate grass 
growth by removing mats of dead grass biomass, thereby helping grass meristems 
get light and water. Advancing  fi res stop at the forest edge, however, because of the 
mineral and water content of the oak litter (Hoagland et al.  1999  )  and oaks may be 
able to allelopathically suppress other species by accumulation of their own tree leaf 
litter. Consequently global warming may be promoting grasslands by increasing 
 fi res, while managed  fi re suppression and introduction of large grazers should help 
trees invade. 

 The shrub effects I found conform well with other studies in the Cross Timbers 
that suggest that shrubs, after encroaching into the grassland asexually, can serve as 
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“nuclei” for tree establishment, facilitating by shading and reducing herbaceous 
cover and vigor (Petranka and McPherson  1979  ) , assuming that trees can avoid pos-
sible allopathic effects. This is a major similarity with tree invasion and establish-
ment in eastern deciduous forests after agriculture, where shrub facilitation also 
included an increase in tree seed dispersal by birds (Myster  1993  ) . Another similar-
ity is the success of red cedar ( J. virginiana  L.) which may be a combination of its 
ease in dispersal, low seed predation and herbivory levels, and high resistance to 
moisture stress (Myster and Pickett  1992a,   b,   1993 ; Myster  1994  ) . Red cedar, how-
ever, cannot tolerate  fi re (Lassoie et al.  1983  ) . Future experimentation in the Cross 
Timbers should include tree seed dispersal patterns (Myster and Pickett  1992b  ) , lit-
ter effects on tree seed predation, germination, and seed losses to fungus (Myster 
and Pickett  1993 ; Myster  1994  ) , and effects of herbivory, tree competition, and 
frost-heaving (Myster and McCarthy  1989 ; Myster and Pickett  1992a  ) . Permanent 
plots are also needed to  fl esh out ecotone dynamics, spatial changes, and tree 
replacements. 

 Finally, due to the large number of severe wind events in Oklahoma, tornados are 
potentially important in structuring the Cross Timbers. I set up plots at Osage Hills 
State Park, seven miles west of Bartlesville, Oklahoma, USA (36 ¢  74²N, 98 ¢  17²W) 
in both an undisturbed and a Tornado touchdown area. I found that while clumping 
was observed in the undisturbed forest at the small spatial scale of 1–8 m and at the 
medium spatial scale of 30–36 m, after a Tornado clumping was only seen at small 
the spatial scales and then only for stems of medium size, for stems with branch 
damage and for stems that resprouted at or below 1 m height. In addition, the blow-
down area showed domination by post oak ( Q. stellata ) with small stems (also seen 
by Shirakura et al.  2006  ) , branch damage and stem resprouting above 1 m most 
common, had no trees that either lost their leaves without branch or stem damage or 
lived without some sort of resprouting, and showed a signi fi cant negative correla-
tion between damage and resprouting (Myster and Malahy  2010  ) . While a tornado 
may eliminate a forest’s spatial heterogeneity and in fl uence future growth and archi-
tecture, it can also increase tree persistence through resprouting. Because Tornados 
create large piles of woody debris, they can increase the risk and severity of future 
 fi res and fungal pathogen attack. These piles create refugia for small mammals, 
increasing their populations and consequent predation on seeds and seedlings. 

 In summary, Oak invasion into this ecotone is slowed down by mammalian seed 
dispersal (author, pers. obs.) as in old  fi elds (Myster and Pickett  1992b  )  but can be 
helped by root sprouting if it as common in the ecotone as in the adjoining closed-
canopy forest (Clark and Hallgren  2003  ) . Likewise resprouting after a tornado may 
help trees to persist. If trees seeds can be dispersed into grassy patches, they will suf-
fer low seed predation compared to shrub patches and underneath trees, and are 
likely to germinate (Myster  1994  ) . After germination, those trees seedlings that can 
escape herbivory have a major advantage (Myster and McCarthy  1989  ) . Oak seed-
lings growing under trees have a low mortality, but high mortality if growing under 
shrubs and in grass patches, perhaps due to intense blow-ground competition for 
water. Taken together then the slow oak invasion, and ecotonal change, that has been 
observed for decades (Dyksterhuis  1948 ; Engle et al.  1991 ; Johnson et al.  1972 ; Kroh 
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and Nisbet  1983  )  may be due to poor oak dispersal and the lack of patches which 
have high survivorship and growth for both oak seeds and oak seedings. Suppression 
of  fi re may be the major reason behind any woody advance across this ecotone.  

    1.3   About This Book 

 The organizing theme in this book will be how forest-grassland ecotones have 
changed in the past, how they are changing today, and how they are likely to change 
in the future. Authors will investigate how the drivers for those changes (e.g., cli-
mate change, human disturbances, tree recruitment mechanisms, stress) differ now 
compared to the past where conceptual models will focus on the replacement, or 
barrier to replacement, of grasses/forbs by individual trees. This book has advan-
tages over other ecotone books in that it focuses directly on forest-grassland eco-
tones, exploring the variation among forest and grassland types. The speci fi c 
objectives are (1) to sample, plot and analyze this ecotone around the earth examin-
ing both its current spatial and temporal variation, and that of the past, (2) to relate 
the results of  fi eld experimentation along these ecotones, and (3) to use all available 
data to construct models of how these ecotones will change into the future. 

 The book is divided into three sections based on the kinds of grasslands that 
border each of three general forest types:

    1.    Ecotones that include these grasslands that border temperate forests: prairies, 
steppes, and pampas.  

    2.    Ecotones that include these grasslands that border tropical forests: old  fi elds, 
savannas, and llanos.  

    3.    Ecotones that include these grasslands that border boreal and cloud forests: 
páramo, and other alpine grasslands.     

 After this introduction, we begin with exploration of changes in the Charpatian 
Basin during the Holocene and Weichselian periods using pollen sequences within 
macrobotanical, charcoal, and phytolite remains. We then examine how synergistic 
relations between disturbance, climatic variability, and human impacts have dynam-
ically shaped present forest-steppe ecotones in northern Patagonia, Argentina tree 
rings, repeat photography, and historical maps. We  fi nish this  fi rst section with  Larix 
sibirica  water relations and photosynthetic performance in the steppe-forest eco-
tone of Northern Mongolia and the role of canopy disturbance, litter, and biotic 
interactions in limiting tree invasion in the pampa-forest ecotone in Argentina. 

 In the second section of the book, we start with an examination of a common and 
much studied old  fi eld ecotone in the Neotropics found in Puerto Rico as part of the 
National Science Foundation’s Long-term Ecological Research (LTER) program. 
We then investigate how climate change interacts with  fi re frequency to affect 
woody plants of different functional types in the Brazilian savanna. We continue 
with a species replacement model which predicts changes to savanna and dry forest 
with conservation implications in Bolivia, and  fi nish with using pollen data assigned 
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to plant functional types and biomes along the llanos-forest ecotone in Colombia 
to prime a vegetative model that also uses climatic data to investigate the role of 
temperature and moisture. 

 In the third section of the book, we  fi rst use pollen analysis to document altitudi-
nal migrations and the composition of the upper forest line of the páramo ecotone in 
Ecuador prior to deforestation and then use a stable carbon isotope analysis to 
explore how the competitive balance between C 

3
  and C 

4
  plants have changed in the 

ecotone over time. Then we map recent  Pinus uncinata  alpine tree line demograph-
ics in the Spanish Pyrenees in order to investigate recruitment trends and effects of 
human disturbance. Next we examine current demographic trends for  Pinus sylvestris  
dynamics along the alpine treeline in Sweden and explore linkages to winter air and 
soil temperatures which include positive feedbacks and nonlinear responses. We 
conclude with how  Picea glauca  alpine tree lines change due to global climate 
change altered by wind exposure and proximity to the Atlantic coast. 

 We  fi nish the book with a synthesis of speci fi c results from each kind of ecotone 
 fi rst, followed by a view concerning forest-grassland ecotones in general, and  fi nally 
a consideration of how ecotones and their research may change in the future, that is 
what lies ahead. Because ecotones will become more common in the future, and 
thus more important to the human race, we hope that this book can serve as a frame-
work for that future research. Within the book chapters themselves, and the papers 
they reference, will be data that can be used by managers to more skillfully predict 
those changes but also to change the suggested social policies.      
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          2.1   Introduction 

 A treeline is a boundary used for marking the edge of the habitat at which trees are 
capable of growing. In ecology an upper and lower treeline is generally highlighted 
(Ødum  1979  )  with an additional transitional zone (ecotone) found between the 
referred boundary and the adjacent open vegetation areas. Temperature besides 
 precipitation is the major factor that controls the growth and sustainment of trees in 
an area. Nevertheless, several local ecological factors including such parameters as 
soil type, local vegetation, snow cover, elevation, geomorphology, rainshadow, 
gravity-induced mass movement, lightning, volcanic eruptions, wild fi res caused by 
meteorite impact or wind shear can alter or prevent the sustainment of an arboreal 
vegetation in an area locally or regionally. 

 In areas of alpine or arctic, also recorded as upper treeline low temperatures 
generally reduce biomass production. This is strikingly disadvantageous for trees as 
their ecological potential is based on the storage of large biomass, rendering them 
ideal in ousting other competitive plants. The emergence of transitionary zones 
between woodlands and grasslands (ecotone) is generally controlled by the avail-
ability of water/humidity as a limiting factor. This boundary is mostly referred to as 
lower or dry treeline (Stevens and Fox  1991  )  in contrast to the alpine and arctic 
treelines. The area of the Carpathian Basin is highly unique from the point that both 
treeline zones are present. 

 Within the belt of the Alps, Dinarides and the Capathians, embracing the basin 
itself, an ecotone related to the upper or alpine treeline developed roughly at an 
elevation of 1,700–2,300 m due to mainly temperature constraints. Conversely, cli-
matic and geomorphological endowments within the heart of the basin favored the 
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emergence of a forest-steppe ecotone along a dry or lower treeline. A treeline does 
not necessarily indicate that beyond the referred boundary no arboreal elements are 
present at all (Arno and Hammerly  1984  ) . Dwarf bushes are characteristic elements 
of a tundra or alpine landscape. These plants however remain dwarf even among 
better conditions as well, say at lower altitudes. 

 Thus a timberline would rather mark the zone of closed woodland beyond which 
scattered tree stands may occur. However, these are generally small and often do not 
reproduce due to the unfavorable conditions. Nevertheless, this clearly illustrates 
the problem that the exact determination of the timberline is fundamentally based 
on how the concept of tree is understood. Based on size measures trees are generally 
considered to fall between 2–8 m in height. This approach is often used in distin-
guishing tree line and the actual woodland boundary as trees higher than 8 m are 
generally con fi ned to the woodland areas below the upper and above the lower 
 treeline. According to another de fi nition, the criterion of woodland is based on the 
presence of a closed canopy with a closure rate of 30–40 % and a soil intervowen by 
roots of arboreal elements. 

 There is a drastic fall in total biomass in the transition zone between the actual 
woodland and the tree line from ca. 20 to 0.6 kg/m 2  due to the replacement of trees by 
smaller bushes and non-arboreal elements. The average annual biomass production 
is also signi fi cantly reduced; in the Alps this value is from ca. 1,000 to <200 g/m 2 /year. 
The actual height of the tree line also varies from area to area in accordance with 
latitude, rainfall, and exposition. The referred alpine ecotone is relatively narrow 
corresponding to an altitudinal difference of ca.100–200 m. Anthropogenic 
in fl uences however may enhance the widening of this ecotone (Myster  2007  ) . Thus 
this zone can even reach a width of 300–400 m as well, as a result of extensive pas-
toralism in alpine pasturelands. The zone of the ecotone connected to either the 
arctic or the dry lower tree line can have extremely large spatial extent due to the 
emergence of a parkland type landscape studded by widely spaced stands of trees. 

 The area of the Great Hungarian Plains hosts a lower or dry treeline with an unusu-
ally wide ecotone, where the actual steppe zone is not uniform (Molnár et al.  2007a,   b    ) 
but rather constitutes a mosaic of more or less isolated grassland patches (Sümegi 
 2011  ) . Nevertheless, it must be kept in mind that the modern landscape is highly 
transformed due to intensive human activities present during the past 8,000 years. So 
the original vegetation must have been only partially preserved. One must turn to 
various environmental historical archives including pollen, charcoal, phytolith, and 
plant macrofossil data, as well as terrestrial mollusks if he or she wants to reconstruct 
shifts in the lower and upper treeline for the late ice age and the Holocene. 

 Investigations aimed at reconstructing  fl uctuations of the timberline are gener-
ally focusing on the analysis of lacustrine and marshland catchment basins and their 
paleoecological records. In case of an upper treeline, the analysis of cave or rock-
shelter sediments is likewise informative. All these sequences yield rich pollen 
material in good preservation in general. On the other hand, wind-borne transporta-
tion of pollen grains to large distances largely hampers the identi fi cation of small-
scale regional  fl uctuations in the tree line. Analysis of plant and animal macrofossils 
including plant tissue, seed and fruit remains, as well as charcoal and mollusks, not 
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to mention plant opalites (phytoliths), which are preserved locally without transpor-
tation offer a better tool in such investigations. The spatial resolution and reliability 
of information gained from these archives is thus a couple of meters instead of kilo-
meters in contrast pollen grains. This makes them ideal in small-scale spatial vege-
tation reconstructions. Not to mention the higher reliability of taxonomic 
identi fi cation of macro remains to the lowest level (species or even subspecies) in 
contrast to pollen grains. 

 In order to understand the development of  forest - steppe  ecotone at the boundary 
of woodland, grassland biotopes nestled in the heart of the Carpathian Basin, one 
must understand the present and past characteristics, as well as behavior of ecologi-
cal factors responsible for the emergence and sustainment of the referred ecotone. 
To accurately capture past  fl uctuations of these factors we turned to archives of 
loess/paleosol sequences and catchment basins recording environmental  fl uctuations 
for the terminal part of the last ice age. For the Holocene the records preserved in 
smaller lacustrine and marshland basins, as well as rock-shelters were utilized. For 
archives we relied on data from pollen and plant opalites, as well as charcoal and 
macrobotanical remains. As an independent control, we turned to terrestrial mol-
lusks, which on the basis of the ecological needs of taxa identi fi ed indirectly re fl ect 
the composition of the vegetation, as well as other nonliving (abiotic) ecological 
parameters such as humidity and temperature (Ant  1963 ; Horsak et al.  2010 ; Meng 
and Hoffmann  2009  ) . Furthermore, the taxa used in our study are highly sensitive to 
vegetational shifts and that of the referred abiotic parameters.  

    2.2   Modern Woodland-Grassland Ecotone in the Carpathian 
Basin and Controversies Around De fi nitions 

 Identi fi cation of woodland-grassland ecotone connected to a lower or dry tree line in 
the heart of the Carpathian Basin, known and termed also as the  Pannonian forest -
 steppe , is in a certain sense the so-called “holy grail” of Hungarian botanical research. 
Controversies between representatives of various Hungarian botanical schools and 
researchers hampered the correct de fi nition of the concept and is a constant subject of 
scienti fi c debates. Issues debated include aspects, age, and trajectories of vegetation 
development in general. The majority of the hard data comes from modern phyto-
geographic and botanical surveys and resulted in such a diversity of scienti fi c views 
between schools that even the actual de fi nition of a forest-steppe has not been 
uniformly accepted yet (Varga et al.  2000 : p. 7). 

 These debates stem from the overwhelming pressure from a group of Hungarian 
botanists, who tried to decide the question on the basis of postulations from modern 
survey data alone regardless of the initial results of paleobotanical studies (Kerner 
 1863 ; Borbás  1900 ; Boros  1929 ; Rapaics  1918 ; Soó  1926,   1929 ; Tuzson  1915  ) . 
Consequently, these early hypotheses must be regarded as working hypotheses 
rather than accepted scienti fi c theories. It’s highly unfortunate though that the 
 uniform prevalence of these early postulations in the scienti fi c mind is still distorting 
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the evaluation and acknowledgement of results of recent paleobotanical studies. 
Nevertheless, the true cause must be linked to the unique geographical setting of the 
Carpathian Basin found in the heart of Europe (Fig.  2.1 ). As a result of its location, 
in contrast to the rest of the European continent, a unique climatic interface devel-
oped here seen in the overlap of four major (Sümegi  1995,   1996,   2004a,   b,   2005  )  
climatic (Oceanic or Atlantic, Continental, Submediterranean and Alpine) in fl uences 
(Fig.  2.2 ) (Réthly  1948 ; Borhidi  1961 ; Bacsó  1959 ; Zólyomi et al.  1992  ) .   

 Besides the referred versatility in the climate, a similarly large-scale variance is 
observed in the geology (bedrock, soils) of the area (Trunkó and Földvári  1996  )  
hosting a likewise highly heterogenous vegetation. As a consequence, oak and beech 
woodlands characteristic of Central and Western Europe are complemented by 
woodlands containing  fl oral elements of the West and East Balkans as well. Not to 
mention the zone of the woodland-grassland ecotone subject of this paper covering 
an area of ca. 100,000 km 2  nestled in the heart of the basin (Fig.  2.3 ).  

 According to our present scienti fi c knowledge, woodland-grassland ecotones gen-
erally emerge at the continental interface of large closed woodlands and adjacent grass-
lands, such as the case of the North American oak prairie. A major  question to be 

  Fig. 2.1    The geographical setting of the Carpathian Basin in the heart of Europe and the extension 
of the European forest-steppe belt and the Pannonian forest-steppe with the location of meteoro-
logical stations referred (after C.S. Hammond’s World Atlas, 1936)       

 


