Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s

Ulf Büntgen a,b,c,⁎ Fernando Martínez-Peña d, Jorge Aldea d, Andreas Rigling a, Erich M. Fischer e, J. Julio Camarero f,h, Michael J. Hayes g,c, Vincent Fatton a, Simon Egli a

a Swiss Federal Research Institute for Forest Snow and Landscape (WSL), 8903 Birmensdorf, Switzerland
b Oeschger Centre for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
c CzechGlobe — Global Change Research Centre AS CR, 60300 Brno, Czech Republic
d Research Unit of Forestry Mycology and Trafficulture, Cesefor Foundation, 42065 Soria, Spain
e Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland
f ARAID-Instituto Pirenaico de Ecología CSIC, Avda. Montañana 1005, 50080 Zaragoza, Spain
g National Drought Mitigation Centre, University of Nebraska-Lincoln, 68583-0988 Lincoln, USA
h Dept. of Ecology, University de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain

A R T I C L E I N F O

Article history:
Received 13 May 2013
Accepted 22 May 2013
Available online 30 May 2013

Keywords:
climate change
dendroecology
diurnal temperature range
ecosystem response
forest growth
Mediterranean Basin

A B S T R A C T

Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May–July diurnal temperature range (r = 0.84; p < 0.00011956–2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Indications of past, present and projected climate change is particularly strong for the western Mediterranean Basin (Luterbacher et al., 2012), where future rates of temperature increase and precipitation decrease will likely accelerate aridification (Fischer and Schär, 2010; Hoerling et al., 2012; Xoplaki et al., 2012). Associated effects on biodiversity and ecosystem functioning (Carnicer et al., 2011; Andreegg et al., 2013), including phenological alterations (Peñuelas et al., 2002), species-specific range shifts (Peñuelas et al., 2007), decreasing forest production (Martínez-Vilalta and Piihol, 2002; Jump et al., 2006; Galiano et al., 2010; Linares and Camarero, 2012), and subsequent reductions in carbon accumulation (Vayreda et al., 2012), are often attributed to warming-induced desiccation (Zhao and Running, 2010; Galiano et al., 2011). The relative roles of temperature-driven evaporative demand and precipitation or their amalgamation on tree growth and mortality, however, are not yet fully understood (Allen et al., 2010; Choat et al., 2012; Williams et al., 2012).

Economic consequences of a drought-induced decline in forest ecosystem productivity and functioning are expected to increase under projected climate change and may even contain a valuable shift from traditional timber harvest to the utilization of other forest resources (Hanewinkel et al., 2012). Socio-economic consequences of a Mediterranean long-term drying, including associated effects on tourism and hydropower, will subsequently require future drought risk and water resource management strategies as part of any public policy and scientific activity (Courtenay-Botterill and Hayes, 2012).

Insight on how trees respond to climate can originate from annual variations in their radial stem thickening. Ring widths retain past environmental conditions that occurred during a tree’s lifespan and therefore constitute a unique high-resolution archive. Nevertheless, most of the existing tree-ring studies focused on species-specific distribution limits, and dendroclimatological evidence from less extreme woodlands is sparse. Many tree-ring chronologies are often also constrained by a rather low sample replication weighted towards long-lived, isolated individuals from open stands that do not necessarily reflect putative growth–climate response patterns of different age
classes coexisting in natural forests (Esper et al., 2008). Further uncertainties related to growth–climate response analyses can arise from the meteorological target measurements themselves (Frank et al., 2007a; Büntgen et al., 2008b; Esper et al., 2010). Particularly severe spatial-temporal heterogeneity in the relationship between tree growth and climate has been reported for Mediterranean sites (Tardif et al., 2003; Büntgen et al., 2010a, 2010b, 2012b; Seim et al., 2012), where the proper recording of sporadic local rainfall events is additionally hampered by a historical instrumental record that is generally too short in length and too coarse in spatial resolution (Brunet et al., 2006).

In seeking to enhance knowledge on interannual to multi-decadal Iberian forest growth dynamics, we compiled a unique ring width network of Scots pine plot chronologies across a homogeneous forest region in Central Spain. European-scale gridded meteorological parameters, as well as state-of-the-art climate model simulations were used for comparison. Results were placed in a socio-economic context and discussed in light of continuous future drying.

2. Materials and methods

This study was conducted in a natural Scots pine (Pinus sylvestris L.) forest in the Central Spanish province of Soria (Fig. 1). This habitat, called Pinar Grande (hereinafter PG), is located between ~1100 and 1500 m asl, roughly covers an area of 12.533 ha, and mainly contains acidic brown soils or alluvial with acid and sandy loam or sandy soils (pH 4–5). The semi-arid climate is continental Mediterranean with a mean annual rainfall and temperature of 530 mm and 10.6 °C, respectively (computed over the 41.5–42.0° N and 2.5–3.0° W region and the 1961–1990 period). Although yearly values are fairly moderate, June–August summer precipitation totals of 87 mm and a corresponding temperature mean of 18.7 °C are indicative for a drought-prone ecosystem.

Core samples were collected from a total of 871 pines in 18 individual forest plots (Fig. 1, Table 1). These fenced protection areas of 150 m² each were installed in 1995 to systematically monitor mush-
temperature means and precipitation totals with more integrative indices of the self-calibrated Palmer Drought Severity Index (scPDSI; Wells et al., 2004), as well as the diurnal temperature range (DTR; Easterling et al., 1997). A composite analysis of gridded 500-hPa-geopotential height fields over the North Atlantic/European sector (Luterbacher et al., 2002) was additionally calculated for the 20 most positive and negative ring width anomalies back to 1876. This extra-verification of putative relationships between tree growth and climate variability further helps assessing possible impacts of large-scale circulation patterns on the observed ring width extremes (Büntgen et al., 2010c).

An ensemble of 12 state-of-the-art regional climate models (RCMs) of the period 1950–2099 AD was selected (Fischer and Schär, 2010). The RCMs were driven by six different General Circulation Models (GCMs) forced with the SRES A1B emission scenario within the European multi-model experiment ENSEMBLES (see van der Linden and Mitchell, 2009 for details). The ensemble mean of the DTR, merged over the May–July seasonal window, was obtained from first averaging across all RCMs driven by the same GCM in order to give all the six GCMs equal weight — a technique already successfully implemented in Büntgen et al. (2012a). Model output was selected over the 41.5–42.0° N and 2.5–3.0° W region, and subsequently employed for comparison with the observational tree-ring and instrumental station records back to 1950. Moreover, model output further predicts trends of the DTR until 2099. Multi-model ensemble mean changes in the DTR between 2070 and 2099 were plotted at the European-scale to assess its spatial patterns with respect to 1960–1989.

3. Results

Plot-specific growth trends, commonly resembling negative exponential functions (Fig. 3a), not only describe an ideal target for fitting a Regional Curve (and subsequently allow RCS detrending), but also reveal a wide range in the absolute width of the individual tree-ring samples (again, fulfilling a prerequisite for RCS detrending). Differences in ring width variability among the 18 sampling plots are most

Table 1
(a) Plot location (30UTM), elevation (m asl), slope (%), aspect (°), and stand density (stem ha\(^{-1}\)) of the sampling plots. (b) Corresponding tree-ring characteristics of each plot: series (number of samples), average growth rate (AGR; mm year\(^{-1}\)), mean segment length (MSL; years), first order autocorrelation (AC1; correlation coefficient), start and end date, as well as length per plot chronology (years), and the mean sample pith offset per plot (MPO; years).

<table>
<thead>
<tr>
<th>Plot</th>
<th>UTM X</th>
<th>UTM Y</th>
<th>Site conditions</th>
<th>Tree ring characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTM</td>
<td>X</td>
<td>Y</td>
<td>asl</td>
<td>Slope</td>
</tr>
<tr>
<td>p 1</td>
<td>506,017</td>
<td>4,634,878</td>
<td>1119</td>
<td>1</td>
</tr>
<tr>
<td>p 2</td>
<td>509,016</td>
<td>4,634,502</td>
<td>1119</td>
<td>5</td>
</tr>
<tr>
<td>p 3</td>
<td>505,718</td>
<td>4,636,688</td>
<td>1139</td>
<td>4</td>
</tr>
<tr>
<td>p 4</td>
<td>501,744</td>
<td>4,634,727</td>
<td>1159</td>
<td>2</td>
</tr>
<tr>
<td>p 5</td>
<td>508,458</td>
<td>4,633,559</td>
<td>1109</td>
<td>5</td>
</tr>
<tr>
<td>p 6</td>
<td>508,573</td>
<td>4,630,911</td>
<td>1149</td>
<td>1</td>
</tr>
<tr>
<td>p 7</td>
<td>506,913</td>
<td>4,636,147</td>
<td>1129</td>
<td>2</td>
</tr>
<tr>
<td>p 8</td>
<td>514,134</td>
<td>4,633,290</td>
<td>1089</td>
<td>3</td>
</tr>
<tr>
<td>p 9</td>
<td>505,783</td>
<td>4,632,826</td>
<td>1149</td>
<td>1</td>
</tr>
<tr>
<td>p 10</td>
<td>503,763</td>
<td>4,632,476</td>
<td>1149</td>
<td>4</td>
</tr>
<tr>
<td>p 11</td>
<td>502,233</td>
<td>4,634,355</td>
<td>1149</td>
<td>1</td>
</tr>
<tr>
<td>p 12</td>
<td>511,152</td>
<td>4,634,309</td>
<td>1119</td>
<td>4</td>
</tr>
<tr>
<td>p 13</td>
<td>504,769</td>
<td>4,632,409</td>
<td>1149</td>
<td>1</td>
</tr>
<tr>
<td>p 14</td>
<td>508,983</td>
<td>4,630,489</td>
<td>1149</td>
<td>1</td>
</tr>
<tr>
<td>p 15</td>
<td>505,348</td>
<td>4,634,911</td>
<td>1129</td>
<td>1</td>
</tr>
<tr>
<td>p 16</td>
<td>503,968</td>
<td>4,632,035</td>
<td>1159</td>
<td>4</td>
</tr>
<tr>
<td>p 17</td>
<td>514,087</td>
<td>4,633,335</td>
<td>1089</td>
<td>1</td>
</tr>
<tr>
<td>p 18</td>
<td>504,464</td>
<td>4,633,864</td>
<td>1129</td>
<td>2</td>
</tr>
<tr>
<td>mp 1-18</td>
<td>506,956</td>
<td>4,633,651</td>
<td>1132</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 2. (a) Temporal distribution of 871 individual Scots pine ring width core samples (blue bars) from 18 plots in the PG reserve, and (b) the relationship between mean segment length (MSL; years) and average growth rate (AGR; mm year\(^{-1}\) of all samples (blue dots), with the red lines referring to their mean).
obvious during the first years of juvenile tree growth (Fig. 3b). A suite of site-specific parameters including plot location, elevation, exposition, inclination and stand density was found to be non-important for the observed variations and trends in pine growth (Table 1).

Despite plot-specific differences in the absolute growth level and trend, all SPL chronologies share an exceptionally high year-to-year coherency over their common period 2002–2011 (Fig. 4a). The strongest growth depressions commonly occurred across all plot sites during
the severe droughts in 2005 and 2009. Slightly less ring width agreement was found during years with overall positive growth anomalies, a well-known feature of dendrochronological time-series behavior. Enhanced growth agreement also occurred after 2002, whereas less similarity characterized the chronologies’ early and less replicated portions. Long-term, network-internal growth synchrony is further indicated over the individual maximum time spans of each plot chronology back to 1880 (Fig. 4b). It should be noted that the constant decrease of plot chronologies is not affecting the inter-plot growth synchrony (Fig. 4c). RBAR and EPS statistics further denote an exceptionally high plot-internal growth agreement (Fig. 4d).

Growth–climate response patterns between the PGRCS chronology and local to regional-scale climate variability (i.e. temperature, precipitation, and scPDSI) of the 20th century reveal some sort of spatio-temporal instability (Fig. 5). While negative relationships with temperature appear most distinct for May, June and July, as well as their seasonal mean, are positive though less pronounced correlations obvious for summer precipitation and scPDSI. On the other side was a much more consistent relationship found between the PGRCS chronology and the DTR (Fig. 6). Significant positive correlations exist between the inverse DTR averaged over the May–July season (MJ) and Scots pine growth over the past 60 years (r = 0.80; p < 0.0001). Even higher correlation of 0.84 was found over the slightly shorter period back to 1956 (Fig. 6c). As a decade, the 1970s is branded by a cool and wet climate across Spain, which allowed for a high level of net primary productivity. Since then, decreasing tree-ring width values match the inverse MJ DTR. An assessment of the spatial significance of the MJ DTR signal further shows reasonable agreement (r > 0.60) over most of the Central Iberian Peninsula and Southern France (Fig. 6d). A composite analysis of the 20 most extreme growth anomalies confirms the synoptic pressure fields and demonstrates the temporal robustness of the obtained relationship back to 1876 (Fig. 7).

4. Discussion

The wide range in plot-specific growth trends and levels (Fig. 3) likely reflects differences in stand age, soil chemistry and water availability between the 18 individual sampling sites, and somehow contradicts the outstanding growth coherency (Fig. 4). In fact, the observed ring width synchrony is particularly surprising, because the 18 plots do not represent (obvious) species-specific distribution limits where one single dominant climatic parameter is assumed to drive tree growth. Moreover, our ring width dataset comprises a substantial amount of juvenile wood that constantly enters the chronology throughout the entire 20th century and is generally assumed to contain a relative high fraction of individual noise rather than an externally-driven environmental signal (Esper et al., 2008). Our results, however, demonstrate that replication can compensate for both factors, and that the species-specific physiological capability and subsequent drought tolerance was possibly nearly reached in the two extreme drought years of 2005 and 2009, for instance.

Significant positive correlations (p < 0.001) between the inverse DTR and pine growth (Fig. 6) are particularly important since the traditional meteorological parameters, such as temperature means, precipitation totals and drought indices were not successful in explaining PG forest vigor (Fig. 5), in line with previous evidence from many parts of the Mediterranean Basin (Büntgen et al., 2010a, 2010b; Seim et al., 2012). Inverse temperature means are inadequate hydroclimatic surrogates and precipitation totals are spatially very heterogeneous. Hence, the daily difference between minimum and maximum temperatures, the DTR, a spatially reliable measure of cloudiness ideally constitutes a hydroclimatic target for the calibration of tree-ring proxy records. A high DTR during the spring–summer season refers more to a cloud-free sky related to high pressure (Easterling et al., 1997), which generally corresponds to reduced soil moisture availability triggered by warm temperatures, little rainfall and enhanced evapotranspiration. Such circumstances control forest growth in sites subject to continental Mediterranean conditions (Camarero et al., 2010). Conversely, cloudy, mild and wet conditions during spring and summer linked to low DTR values likely enhance photosynthetic activity and biomass productivity (Gimeno et al., 2012).

Caution is, however, advised as the gridded DTR is derived only from those stations that simultaneously report daily minimum and maximum temperatures and were included in the CRU TS3.1 network (Jones et al., 2012). Yet, there are only eight stations available within the 38–45° N and 6°W to 1° E domain that fulfill all criteria after homogenization (Fig. 6a). Moreover, none of these records is covering the entire 20th century, and decreasing station replication coincides with increasing station distance (Fig. 6a). The overall amount of uncertainty in daily station measurements also increases back in time (Brunet et al., 2006). Temporal inconsistency in the quality and quantity of meteorological observations is well known to particularly affect the relationships between early instrumental targets and their corresponding tree-ring proxies (Frank et al., 2007a). In case of the Iberian Peninsula, this issue was likely most critical during the first half of the 20th century when Spanish meteorological readings were less systematic (Büntgen et al., 2008a), and differences between the ancient Montsouri shelter and the modern Stevenson screen for daily maximum and minimum temperatures directly affected the DTR (Brunet et al., 2011).
An additional factor that can impact terrestrial biomass productivity and may therefore imply some instability in the observed relationship between pine growth and springtime hydroclimate possibly derives from changes in the ratio between diffuse and direct solar radiation at the Earth's surface (Wild et al., 2005), which would also result from a changing DTR. Lower rates of diffuse radiation under clear sky conditions, expressed by a greater DTR, are expected to decrease plant photosynthesis (Gu et al., 2003), whereas a turbid sky likely enhances canopy photosynthesis. Quantification of possible negative effects of a recent global brightening (Wild, 2009) on Mediterranean forest growth and overall ecosystem productivity, however, remains subject to further analyses.

A distinctively positive phase of the North Atlantic Oscillation (NAO; Hurrell, 1995), depicted by a pronounced Azores High and Icelandic Low coincided with the 20 most negative growth anomalies (Fig. 7), whereas low pressure over the Azores and high pressure over Eurasia corresponded to enhanced pine growth. This dominant and NAO-related synoptic driver of Iberian pine growth has previously been reported (Camarero, 2011), and was subsequently related to wet and mild conditions in the winter and spring months before

Fig. 6. (a) Temporal coverage of eight individual meteorological stations in Spain and southern France (gray bars) that were used for calculating the DTR, plus the mean distance of these stations to the PG forest. (b) The inverse DTR of May–July averaged over the 41.5°–42.0° N and 2.5°–3.0° W region (red back to 1946 and light orange back to 1901), and the PGRCS chronology (blue), which was scaled to the DTR data over the 1901–2009 period. (c) Correlations between monthly (January–December) and seasonal (May–July) resolved (inverse) DTR values and the PGRCS chronology computed over four different periods (colors). The horizontal lines mark the corresponding 99.9% confidence limits after correction for first order autocorrelation in each time-series. (d) Spatial field correlations between gridded 0.5° × 0.5° May–July DTR indices (inverse) and the PGRCS chronology computed over the 1966–2009 period. White star denotes the PG sampling region.

Fig. 7. Composite analysis of (a) the 20 most negative and (b) the 20 most positive pine ring width extremes computed against May–July 500-hPa-geopotential height (gpm) data back to 1876.
tree-ring formation usually associated to negative NAO phases (Pascho et al., 2011). Positive winter–spring NAO phases are associated with clear sky conditions over the central and western Iberian Peninsula and such below-normal cloud cover is linked to a high DTR and thus low pine growth. These observations are in line with the overall assumption that recent changes in atmospheric circulation patterns are partially responsible for declining precipitation trends and major drought episodes over the western Mediterranean Basin (Xoplaki et al., 2012).

The herein observed continuous long-term decline in continental Iberian forest growth since the mid-1970s (Fig. 6), which was a decade of cool and wet climate across Spain (de Luis et al., 2010; del Río et al., 2011), supplements a recently discussed reduction of Périgord truffle (Tuber melanosporum) yield (Büntgen et al., 2012a), and coincides well with decreasing discharge rates of the upper Duero River in the vicinity of the PG sampling sites (Lorenzo-Lacruz et al., 2012).

The observed warming and drought intensification over the Central Iberian Peninsula from the mid-1970s is consistent with the increase in DTR in an ensemble of regional climate models (RCMs), which further projects its continuation until the end of the 21st century (Fig. 8). Despite wide uncertainty ranges discussed with climate model output for the semi-arid Mediterranean Basin (Boberg and Christensen, 2012), a well-defined envelope of the 12 utilized RCMs ensemble members evidently projects a rising MJ DTR of ~1.2 K until 2099 with respect to 1960–1989 mean (Fig. 8a). Less cloud cover and less precipitation together with higher temperatures and more evapotranspiration are circumstances that likely cause this long-term increase of the DTR, which will probably translate into more drought episodes over the western Mediterranean Basin (Xoplaki et al., 2011). Positive winter–spring NAO phases are associated with negative MJ DTR and coincides well with decreasing discharge rates of the upper Duero River in the vicinity of the PG sampling sites (Lorenzo-Lacruz et al., 2012).

The necessity of interdisciplinary collaboration towards drought adaptation and mitigation, however, becomes a challenging task when political and cultural demands are intertwined with socio-economic interests (Hanewinkel et al., 2012). Additional scientific complexity originates from land-atmosphere couplings between soil moisture, vegetation structure and cloud cover (Senevirante et al., 2006), among other factors. These intertwined subjects illustrate how the impacts to any component within an ecosystem cascade throughout the entire ecosystem, and the continental Iberian forests are no exception. The specific economic, social, and environmental impacts are local and can exhibit strong spatial variability. For this reason, a proactive approach to address these ongoing and potential future impacts is recommended, beginning with their detailed assessment among various spatiotemporal scales (Hayes et al., 2004).

5. Conclusions

This study comprises a total of 871 Scots pine ring width samples from 18 individual plot sites collected in a continental Mediterranean forest ecosystems in Central Spain. Highly synchronized growth variations at the network level were triggered by changes in springtime DTR between May and July. Positive and negative growth extremes have been mainly caused by a stronger warming trend of the maximum (day) than the minimum (night) temperatures (Brunet et al., 2006). If and how the PG forest structure will change in a drier future with a wider thermal amplitude remains unclear, but other studies have already reported climate-driven vegetation shifts from initial (sub-boreal) Scots pine dominance to more drought-tolerant (sub-Mediterranean) pubescent oaks in the Spanish Pyrenees (Galiano et al., 2010) and in the dry inner-Alpine forests of Switzerland (Rigling et al., 2012), alterations in the quality and quantity of wood formation (Eilmann et al., 2011) and adjustments in hydraulic architecture in the concerned forests, as well as increased mortality rates of Austrian Scots pine sites that were most drought exposed (Oberhuber, 2001). The predicted climate change will likely affect the metabolism of trees (McDowell, 2011), including hydraulic failure (Choat et al., 2012) and reduction of carbon uptake or increasing respiration costs and subsequent carbon starvation (McDowell, 2011), which will subsequently transfer in higher mortality rates (Allen et al., 2010) and a decreasing capacity of water-limited Spanish forests to accumulate carbon (Vayreda et al., 2012).

Socio-economic consequences of the predicted hydroclimatic changes in continental Iberia and their devastating effects on forest ecosystems may cover a wide range of complex issues including wildfire, settlement, agriculture, water management, recreation, tourism, and environmental protection, together with biological conservation (Hanewinkel et al., 2012). Social vulnerability is anticipated to be particularly severe in rural areas (Samils et al., 2008), where hydroclimatic changes not only have stronger consequences for widespread domestic water supply but also for subsistence agricultural irrigation. An array of ecological, societal and economic impacts emphasizes the eminent need to increase our knowledge on global climate change.

Fig. 8. Simulated temporal changes of the May–July DTR (color lines) over the 41.5–42.0° N and 2.5–3.0° W region in Spain and between 1950 and 2099 AD, with all time-series being expressed as 15-year running means with respect to the 1960–1989 reference period. The black line shows the multi-model mean and the gray band a range of ±1.0 standard deviation. The right map denotes simulated spatial patterns of the May–July DTR for 2070–2099 with respect to 1960–1989 and using the ensemble mean. The white star refers to the PG sampling region.
coincided with anomalous low- and high-pressure patterns over the Azores Islands, which mainly depend on alternating NAO phases. Declining forest vigor of the PG reserve parallels a long-term warming and drying of the Central Iberian Peninsula since the mid-1970s. This trend, predicted to continue under future climate change, not only downgrades local timber and fungi harvest, but likely also weakens ecosystem-dependent enterprises caused by a potential cascade of impacts. Adaptation strategies of forest management and agricultural systems, as well as environmental protection and biodiversity conservation, are recommended to take these linkages into account when preparing for the future.

Acknowledgments

Supported by the WSL-internal DIITREc project, the Eva Mayr-Stihl Foundation, the project AGL2012-40035-C03-01 (Ministerio de Economía y Competitividad of Spain, Secretaría de Estado de Investigación, Desarrollo e Innovación), the Micosylva project (Interreg IVB SUDOE SOE1/P2/E069), and the Government of Castilla y León. Staff of CIF Valonsadero contributed to the network maintenance, and the Czech project “Building up a multidisciplinary scientific team focused on drought” (No. CZ.1.07/2.3.00/20.0248).

References

Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiology 32, 326–336.

van der Linden, P., Mitchell, J.F.B., 2009. ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, Exeter, UK (160 pp.).

