Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests

LAIA ANDREU-HAYLES*, OCTAVI PLANELLS†, EMILIA GUTIÉRREZ†, ELENA MUNTAN†, GERHARD HELLE†, KEVIN J. ANCHUKAITIS* and GERHARD H. SCHLESER†
*Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA, †Departament d’Ecologia, Universitat de Barcelona. Av. Diagonal, 645, 08028, Barcelona, Spain, †Helmholtz-Centre Potsdam, German Centre for GeoSciences – GFZ Section 5.2 Climate Dynamics and Landscape Evolution, Telegrafenberg, C 127, 14473 Potsdam, Germany

Abstract
We investigated the tree growth and physiological response of five pine forest stands in relation to changes in atmospheric CO₂ concentration (c₂) and climate in the Iberian Peninsula using annually resolved width and δ¹³C tree-ring chronologies since AD 1600. δ¹³C discrimination (Δ ≈ cᵢ/c₂), leaf intercellular CO₂ concentration (cᵢ) and intrinsic water-use efficiency (iWUE) were inferred from δ¹³C values. The most pronounced changes were observed during the second half of the 20th century, and differed between stands. Three sites kept a constant cᵢ/c₂ ratio, leading to significant cᵢ and iWUE increases (active response to c₂); whereas a significant increase in cᵢ/c₂ resulted in the lowest iWUE increase of all stands at a relict Pinus uncinata forest site (passive response to c₂). A significant decrease in cᵢ/c₂ led to the greatest iWUE improvement at the northwestern site. We tested the climatic signal strength registered in the δ¹³C series after removing the low-frequency trends due to the physiological responses to increasing cᵢ. We found stronger correlations with temperature during the growing season, demonstrating that the physiological response to cᵢ changes modulated δ¹³C and masked the climate signal. Since 1970 higher δ¹³C values revealed iWUE improvements at all the sites exceeding values expected by an active response to the cᵢ increase alone. These patterns were related to upward trends in temperatures, indicating that other factors are reinforcing stomatal closure in these forests. Narrower rings during the second half of the 20th century than in previous centuries were observed at four sites and after 1970 at all sites, providing no evidence for a possible CO₂ ‘fertilization’ effect on growth. The iWUE improvements found for all the forests, reflecting both a cᵢ rise and warmer conditions, seem to be insufficient to compensate for the negative effects of the increasing water limitation on growth.

Keywords: δ¹³C ratios, global warming, intrinsic water-use efficiency (iWUE), Mediterranean region, ring width, rise of atmospheric CO₂ concentration, tree rings

Received 15 August 2010 and accepted 29 September 2010

Introduction
Mediterranean forests are extremely vulnerable to climate change (Lindner et al., 2010). Patterns of terrestrial carbon exchange may already be changing as a consequence of land-use modifications and climatic changes (Schimel et al., 2001). Presently, the temperature increase is widespread over the globe, and in addition precipitation declined in the Mediterranean region from 1900 to 2005 (Trenberth et al., 2007). Beyond the direct radiative effect of CO₂ concentration as a key driver of climate change, the increase in atmospheric CO₂ concentration plays an important role in tree physiology. Higher CO₂ concentrations might theoretically produce a ‘fertilization’ effect during photosynthesis leading to higher growth rates. Enhanced forest growth and wood production are projected to occur due to rising atmospheric CO₂ concentrations and warming in northern and western Europe, whereas in southern and eastern regions decreased productivity can occur because of increased frequency of droughts and fire risks (Lindner et al., 2010). In Mediterranean climates, the increase in atmospheric CO₂ might enhance tree growth if the ‘fertilizing’ effect is able to compensate for possible constraints on growth due to changes in temperature and rainfall. In southern Europe, a very sensitive region to climate variability, climate change is projected to result in warmer and drier conditions with longer droughts, as well as a decrease in water availability (Alcamo et al.,...
2007). In this context, the response of trees to environmental changes (drier conditions and a CO₂-enriched atmosphere), in terms of growth and intrinsic water-use efficiency (iWUE), is a relevant issue, especially in Mediterranean regions.

Tree rings have been extensively used to assess the effects of climatic and environmental changes on forest ecosystems (Fritts, 1976). More complete knowledge about how the terrestrial carbon reservoir is responding to rising atmospheric CO₂ concentrations (cₐ), requires more detailed studies on plant physiological adaptations (Feng, 1998). High cₐ can lead to a reduction in stomatal conductance and transpiration and result in improved water-use efficiency, while it can also simultaneously enhance photosynthesis rates and light-use efficiency (Drake et al., 1997). Even though this has been previously demonstrated in controlled experiments (Ceulemans & Mousseau, 1994; Ainsworth & Long, 2005), extrapolations to natural ecosystems are complicated. By using stable carbon isotopes (δ¹³C) of tree-ring cellulose, discrimination (Δ) can be evaluated in natural forests through time (Saurer et al., 2004). This provides the possibility of analyzing changes in iWUE because discrimination (Δ ≈ c₂/c₁) is linked to iWUE through the effects of assimilation and stomatal conductance.

This approach allows the assessment of potential changes in tree physiology through time and has been used in several regions of the world (i.e. Marshall & Monserud, 1996; Williams & Ehleringer, 1996; Bert et al., 1997; Duquesnay et al., 1998; Feng, 1998; Saurer et al., 2004; Klein et al., 2005; Silva et al., 2009; Gagen et al., 2011; Nock et al., 2011). Although the results varied among sites and regions, most of these investigations show an enhancement in iWUE for the 20th century. In Mediterranean areas, an increasing number of studies have related δ¹³C ratios to meteorological variables (Ferrio & Voltas, 2005; Ferrio et al., 2006; Andreu et al., 2008; Correia et al., 2008; Voltas et al., 2008; Battipaglia et al., 2009; Planells et al., 2009). Others have estimated the iWUE via the extrapolations proposed above using leaves (Martínez-Vilalta & Piñol, 2002), wood samples (Ferrio et al., 2003), 5-year (Peñuelas et al., 2008) and 5-year blocks from tree-ring wood (Linares et al., 2009), as well as annual tree-ring holocellulose over short periods (Martin-Benito et al., 2010). Here, we present annually resolved tree-ring width and δ¹³C chronologies (of x-cellulose), from five Iberian pine forests, three of them covering the last four centuries. The study deals with their responses to rising cₐ and changing climate in terms of tree physiology and growth. Since real Δ measurements are only available for recent decades (Saurer et al., 2004), the use of this approach on these long tree-ring chronologies provides a long-term perspective on changes in mature natural pine forests since AD 1600 in the Iberian Peninsula.

The climatic signal in these tree-ring chronologies of three pine species (Pinus sylvestris L., P. uncinata Ramond ex DC and P. nigra Arnold subsp. salzmannii) has already been assessed in previous studies (Andreu et al., 2008; Planells et al., 2009). All δ¹³C chronologies recorded summer precipitation and temperature variability, whereas a wide range of responses to climate were found for the corresponding tree-ring width chronologies at the same five sites (Andreu et al., 2008). Each ring-width chronology showed its own relationship with climate depending on varied stand features and local climatic conditions, with only two of them apparently constrained directly by water availability. Our present study extends the data set provided by Andreu et al. (2008) back to the 17th century and focuses primarily on distinguishing between the effects of changes in cₐ and climate modulating δ¹³C of tree-ring cellulose. High δ¹³C ratios are the result of a reduction in stomatal conductance, related to air relative humidity and antecedent rainfall, and/or high photosynthetic rates, related to temperature and photon flux (McCarroll & Pawellek, 2001). Previously, we explored the influence of climatic variables on δ¹³C at all the study sites (Andreu et al., 2008), while here we assess the effect of the recent environmental changes. Recently, an objective correction (the ‘preindustrial’ or ‘PIN’ correction) has been proposed to remove the low-frequency trends from tree-ring δ¹³C chronologies caused by tree physiological responses to changes in cₐ (McCarroll et al., 2009). Here, we use the PIN correction to evaluate whether the trends observed in the δ¹³C series can be explained by the physiological responses to changes in cₐ also described by the three theoretical scenarios suggested in Saurer et al. (2004), and/or by changes in climate. Since the iWUE rates depend on carbon assimilation (A) and stomatal conductance (g), an enhancement in the iWUE could be due to either an increase in A, a decrease in g, or both. The assessment of changes in tree growth will provide indirect information regarding A, aiding us in elucidating the causes of the observed patterns.

The aims of this work are: (1) to evaluate changes in the δ¹³C values, Δ, cₐ and iWUE of the studied forests; (2) to test the physiological response of trees to the increase of cₐ by the use of the PIN correction; (3) to assess changes in growth during the studied periods; and (4) to determine whether changes in climate have also had a role in modulating the observed trends in δ¹³C ratios and growth. Answering these questions will allow us to conclude whether there has been an increase in the iWUE at the studied stands, caused by increasing cₐ and/or changes in climate, which compensates, in
terms of tree growth, for the negative effects of the increasing water limitation already reported for the Mediterranean region.

Material and methods

Study sites and sampling

Five forest stands were sampled on the Iberian Peninsula (Fig. 1; Table 1). One P. nigra stand is located in the south-east (pnCaz), whereas the rest, two forests of P. sylvestris (psLil and psUrb) and two of P. uncinata (puPed and puUrb), are in the north. psUrb and puUrb are located only 10 km apart from each other; permitting the assessment of the effects of different site conditions and species-specific responses under similar climatic conditions (Planells et al., 2009). Sampling focused on the oldest natural forest stands in the area when possible. At each site, more than fifteen trees were cored with an increment borer at around 1.30 m stem height. At least four cores were taken from each tree: two for ring-width chronology building and the rest for isotope analyses.

Ring-width chronologies

Cores were sanded until wood cells were clearly visible under the microscope (Stokes & Smiley, 1968). All samples were visually crossdated following the procedures described by Yamaguchi (1991). After crossdating, the ring widths were measured at an accuracy of 0.01 mm using an ANIOL semi-automatic device (Aniol, 1983). The resulting series underwent a crossdating quality control using the statistical program COFECHA (Holmes, 1983). The characteristics of the tree-ring width chronologies are shown in Table 2.

Isotope chronologies

For pnCaz, psLil and puPed, eight to ten crossdated cores from four different trees were selected, whereas for psUrb and puUrb, eight cores from eight trees were chosen (Table 3). These cores were dated with an absolute precision using the ring-width chronologies established at each site (Table 2). For each location, the annual tree rings were split using a scalpel and pooled year by year (Leavitt & Long, 1984; Treydte et al., 2001; Leavitt, 2008).

$\delta^{13}C$-cellulose was extracted to avoid isotope variations caused by varying contents of other wood fractions. Sodium hydroxide, sodium chlorite and acetic acid were used to remove the extractives (Loader et al., 1997). The $\delta^{13}C$-cellulose was homogenized in two different ways: psUrb and puUrb samples were ground with an ultra centrifugation mill (Retsch ZM1, mesh size of 0.5 mm); samples from pnCaz, psLil and puPed were homogenized with an ultrasonic device (Laumer et al., 2009). $^{13}C/^12C$ ratios were measured as CO$_2$ by combusting the $\delta^{13}C$-cellulose samples in an elemental analyzer (Fisons NA 1500 NC, Fisons Instruments, Milan, Italy) interfaced with an IRMS (Micromass Optima isotope ratio mass-spectrometer, VG Instruments, Manchester, UK) operating in continuous flow mode. The reproducibility was better than 0.1‰. The isotope signature is expressed in the delta notation relative to the standard VPDB (IAEA, 1995):

$$\delta^{13}C_{\text{sample}} = \left(\frac{^{13}C/^{12}C}_{\text{sample}} - 1\right) \times 1000(\text{‰}).$$

Calculations for c_i/c_o, c_i and iWUE

The $\delta^{13}C$ raw data were used to calculate carbon isotope discrimination against ^{13}C (Δ), which expresses the isotope shift between air ($\delta^{13}C_{\text{air}}$) and plant organic matter

Fig. 1 Above: Geographical location of the studied sites in the Iberian Peninsula. Below: $\delta^{13}C_{\text{ring}}$ data vs. annual temperature (T), precipitation (P) and vapor pressure deficit (VPD) from 1901 to 1999.

© 2011 Blackwell Publishing Ltd, Global Change Biology 17, 2095–2112
Table 1 Location and characteristics of the sites, as well as annual mean temperature (T), annual total precipitation (P) and annual vapor pressure deficit (VPD) obtained using the meteorological CRU 2.1 data set (resolution of 0.5°) from 1901 to 2002, annually and from June to August (JJA).

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Cazorla</th>
<th>Pinar de Lillo</th>
<th>Pedraforca</th>
<th>Urbion</th>
<th>Urbion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Pinus nigra</td>
<td>P. sylvestris</td>
<td>P. uncinata</td>
<td>P. sylvestris</td>
<td>P. uncinata</td>
</tr>
<tr>
<td>Range</td>
<td>Baetic</td>
<td>Cantabrian</td>
<td>Pre-Pyrenees</td>
<td>Urbion</td>
<td>Urbion</td>
</tr>
<tr>
<td>Latitude (°)</td>
<td>37.80</td>
<td>43.05</td>
<td>42.23</td>
<td>41.97</td>
<td>42.00</td>
</tr>
<tr>
<td>Longitude (°)</td>
<td>–2.95</td>
<td>–5.25</td>
<td>1.70</td>
<td>–2.82</td>
<td>–2.75</td>
</tr>
<tr>
<td>Altitude (m asl)</td>
<td>1800</td>
<td>1600</td>
<td>2100</td>
<td>1750</td>
<td>1950</td>
</tr>
<tr>
<td>Aspect</td>
<td>SW</td>
<td>NW</td>
<td>E</td>
<td>NE</td>
<td>SW</td>
</tr>
<tr>
<td>Slope (°)</td>
<td>15</td>
<td>28</td>
<td>36</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Stand structure</td>
<td>Open forest</td>
<td>Mainly open forest</td>
<td>Open forest</td>
<td>Closed forest</td>
<td>Open forest with closed areas</td>
</tr>
</tbody>
</table>

Table 2 Characteristics of the tree-ring width chronologies

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Cazorla</th>
<th>Pinar de Lillo</th>
<th>Pedraforca</th>
<th>Urbion</th>
<th>Urbion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees/cores</td>
<td>33/68</td>
<td>21/45</td>
<td>23/57</td>
<td>15/25</td>
<td>17/32</td>
</tr>
<tr>
<td>Mean intercorrelation</td>
<td>0.676</td>
<td>0.595</td>
<td>0.565</td>
<td>0.560</td>
<td>0.562</td>
</tr>
<tr>
<td>Mean sensitivity</td>
<td>0.253</td>
<td>0.258</td>
<td>0.175</td>
<td>0.207</td>
<td>0.175</td>
</tr>
<tr>
<td>Mean length (years)</td>
<td>389.8</td>
<td>310.2</td>
<td>435</td>
<td>204</td>
<td>187.7</td>
</tr>
</tbody>
</table>

Numbers of trees and cores; time span; mean correlation of all the series with the master chronology (Mean intercorrelation); measure of the interannual variability (Mean sensitivity) and average of the number of years measured in each core (Mean length).

Table 3 Characteristics of the raw δ13C tree-ring chronologies

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Cazorla</th>
<th>Pinar de Lillo</th>
<th>Pedraforca</th>
<th>Urbion</th>
<th>Urbion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees/cores</td>
<td>4/9</td>
<td>4/10</td>
<td>4/8</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>Mean ± SD (%)</td>
<td>–21.05 ± 0.60</td>
<td>–22.13 ± 0.69</td>
<td>–22.01 ± 0.61</td>
<td>–23.55 ± 0.58</td>
<td>–21.91 ± 0.82</td>
</tr>
<tr>
<td>Min (%)</td>
<td>–22.9</td>
<td>–24.2</td>
<td>–24.3</td>
<td>–24.9</td>
<td>–24.5</td>
</tr>
<tr>
<td>Max (%)</td>
<td>–19.9</td>
<td>–20.6</td>
<td>–20.5</td>
<td>–22.5</td>
<td>–20.3</td>
</tr>
<tr>
<td>Range (%)</td>
<td>2.99</td>
<td>3.54</td>
<td>3.82</td>
<td>2.36</td>
<td>4.27</td>
</tr>
</tbody>
</table>

Numbers of trees and cores pooled at each site for performing the isotopic analyses. Time span, mean, standard deviation (SD), minimum (Min), maximum (Max) and range of the raw δ13C series obtained.

\[
\Delta = \frac{\delta{}^{13}C_{\text{air}} - \delta{}^{13}C_{\text{tree}}}{1 + \delta{}^{13}C_{\text{tree}}/1000}
\]

(2)

\[
\Delta \approx \delta{}^{13}C_{\text{air}} - \delta{}^{13}C_{\text{tree}} = a + (b-a) \frac{c_t}{c_a}
\]

(3)

For C3 plants, the relationship between carbon isotope discrimination and leaf gas exchange can be described by the following equation (Farquhar et al., 1982, 1989):

\[
\text{(δ13C)}_{\text{tree}} \text{ in %)} = a + (b-a) \frac{c_t}{c_a}
\]

(4)

where \(a \) is the fractionation between \(^{13}\text{CO}_2 \) and \(^{12}\text{CO}_2 \) during diffusion of CO2 through the stomata (4.4%O’Leary, 1981); \(b \) is the discrimination against \(^{13}\text{CO}_2 \) due to RuBP carboxylase.

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 2095–2112
(~ 27%; Farquhar & Richards, 1984); and c_i and c_w are the needle intercellular spaces and ambient concentrations (μmol mol$^{-1}$) of CO$_2$, respectively.

Records of δ^{13}C$_{an}$ obtained from Antarctic ice core data and direct measurements (Francey et al., 1999), summarized by McCarroll & Loader (2004), were used to calculate Δ using Eqn (3). It was assumed that the δ^{13}C$_{an}$ at the experimental site equaled the δ^{13}C$_{atm}$ of the ambient atmosphere. Knowing Δ, c_i/c_w can be calculated by rearranging Eqn (3):

$$
c_i = \frac{\Delta - a}{b - a} c_w
$$

(4) c_i was determined using the data of the atmospheric CO$_2$ concentration from Robertson et al. (2001) until 1993 and the mean annual values from Mauna Loa from 1994 to 2002 in the composite series provided by McCarroll et al. (2009). iWUE is the ratio of the fluxes of net photosynthesis (A) and conductance for water vapor (g_{w}) (Feng, 1999), citing Ehleringer et al. (1993):

$$
iWUE = \frac{A}{g_{w} c_i} \left(\frac{c_i - c_a}{1.6} \right).
$$

(5)

Although the Franscy and Farquhar model (1982) was developed for whole-leaf tissue, which differs isotopically from stem cellulose, many authors (e.g. Bert et al., 1997) have used δ^{13}C tree-ring cellulose to calculate this set of equations considering a constant isotopic offset between wood and leaves (Feng, 1998). In addition, intraseasonal investigations revealed identical trends in cellulose of leaf and tree ring, where the latter was found to be generally enriched in δ^{13}C when compared with the former (Helle & Schleser, 2004). Furthermore, the use of cellulose from tree rings instead of needle organic matter allows precise annual dating and assessment of long-term variation through time depending on the time span of the tree-ring chronology. Simple linear regression analysis was used to assess temporal trends in Δ ($\approx c_i/c_w$), c_i and iWUE, as well as to assess their significance. The corresponding linear regression slopes are the rates of change per year for each variable for a chosen period of time.

Meteorological data

The meteorological data used was from the CRU TS 2.1 0.5’ gridded product (Mitchell & Jones, 2005). Monthly minimum, mean and maximum temperatures, as well as total monthly precipitation from 1901 to 1999 were used. The coordinates of the closest grid point selected at each site are described in Table 1. Vapor pressure deficit (VPD) is the difference between the actual and the maximum amount of moisture in the air when it is saturated. VPD was computed by subtracting the vapor pressure (VP) from the daytime saturation vapor pressure (VPsat), obtained using the equations proposed by Ferrio & Voltas (2005) for the Mediterranean region:

$$\ln(\text{VP}) = 6.34 + 0.047T_m + 0.93 \left(\frac{P}{1000} \right) - 0.22 \left(\frac{Z}{1000} \right),$$

$$\text{VP}_{sat} = 613.75 \exp \left(17.502 \frac{T_{day}}{240.97 + T_{day}} \right).$$

where T_m is the monthly mean temperature ($^\circ$C), P is monthly precipitation (mm) and Z is altitude (masl). T_{day} (daytime temperature) is calculated summing one-third of average minimum temperatures and two-thirds of average maximum temperatures. Simple linear regressions were used to assess the significance of temporal trends in these meteorological variables. Where appropriate, one-way analysis of covariance (ANCOVA) was used to test for significant differences between two regressions. Monthly mean temperature and total monthly precipitation, from 29.75 to 50.25°N (latitude) and from 11.75°W to 19.75°E (longitude), were used to perform spatial correlation analyses by computing the Pearson correlation coefficients between the grid points and the δ^{13}C chronologies from 1901 to 1999.

Corrections of nonclimatic trends

All δ^{13}C chronologies (raw data) showed a decreasing trend attributed to the rise of 13C-depleted atmospheric CO$_2$ due to fossil fuel burning and deforestation since industrialization (the Suess effect). Therefore, before performing the field correlation analyses the raw series had to be corrected. The corrected δ^{13}C chronologies (δ^{13}C$_{corr}$) were obtained by adding the correction values, tabulated by McCarroll & Loader (2004), given as the differences between the actual atmospheric δ^{13}C value (for each year) and the preindustrial isotope signature (~6.4‰, AD 1850). The PIN correction (McCarroll et al., 2009), which tries to estimate the δ^{13}C values that would be expected under the CO$_2$ concentrations prior to industrialization, was also applied to the series after the classical one described above. The PIN correction is based on two logical constraints delimited by the likely physiological response of trees: first, ‘that a unit increase in c_w cannot result in more than the same unit increase in c_i’ (passive response); and second, ‘that increases in iWUE result as a result of an increase in c_i are limited to maintaining a constant c_i/c_w ratio’ (active response). The δ^{13}C$_{an}$ chronologies and the series after applying both corrections (δ^{13}C$_{pin}$) were used to perform spatial correlations. The results were used to test the effectiveness of the PIN correction. Simple linear regressions were used to assess the significance of changes in δ^{13}C$_{an}$ and δ^{13}C$_{pin}$ series vs. c_w and time. ANCOVA was performed where necessary to test whether two regressions differed significantly.

Tree growth

We assessed the modern tree growth by comparing the ring-width (RW) raw measurements of the last 50 years with those of the previous centuries. For each site, RW raw data were used to calculate the frequency of the RWs for different time intervals. This approach was inspired by Salzer et al. (2009), who used raw RW data directly to assess bristlecone pine growth trends in the Great Basin (USA) in order to avoid possible artefacts due to dendrochronological standardization methods. Here, before performing the histograms, the first 150 years from all the series were removed to avoid the age/size trend. The nonparametric Kolmogorov–Smirnov test, based on the empirical cumulative distribution function (CDF), was
used to test whether the empirical distributions before and after 1950 were significantly different at each site. Additionally, trends in these selected RW raw data sets against c_i and time were assessed by means of simple linear regressions and tested for significance between regressions using ANCOVA.

Results

Site locations and climatic regimes

Due to the location of the sites in the Iberian Peninsula (Fig. 1), different climatic regimes affect the studied stands (Table 1). The southernmost forest (prCaz) showed the highest $\delta^{13}C$ values reflecting the driest annual conditions of all the sites: the highest mean temperature, the lowest precipitation and the highest VPD annually (Fig. 1), as well as during the summer season (Fig. S1). The highest amounts of precipitation during the year are observed at the psLil and puPed stands (Fig. 1), which have very similar mean temperatures during summer (Fig. S1). These factors result in the lowest annual and summer VPDs and thus lead to lower $\delta^{13}C$ values in comparison to prCaz and puUrb. The puUrb $\delta^{13}C$ values are in an intermediate range. However, although psUrb experiences similar climatic conditions to puUrb, it appears as an outlier from the water availability gradient defined by VPD apparently shown by the rest of the sites (Figs 1 and S1).

Temporal variations in $\delta^{13}C$, $\Delta (\approx c_i/c_o)$, c_i and iWUE

All the $\delta^{13}C_{raw}$ chronologies decreased from the second half of the 19th century onwards, similar to the declining $\delta^{13}C_{atm}$ trend (Fig. 2), and at four of the sites showed the largest decreases from 1950 to 1999 (Table 4). However, the trends for the most recent period, from 1970 to 1999, showed nonsignificant declines in three of the sites, and in the rest, lower rates than expected due to the steeper decline of $\delta^{13}C_{atm}$ since 1970 (Table 4). Nevertheless, the mean of the tree-ring $\delta^{13}C$ rates calculated for different periods since industrialization tracks very close to the decreasing rate of $\delta^{13}C_{atm}$ (in %yr$^{-1}$ since 1850: -0.010 vs. -0.008; since 1900: -0.013 vs. -0.012; since 1950: -0.023 vs. -0.025, respectively). In addition, the $\delta^{13}C_{atm}$ values fall within the range defined by the standard deviation (SD) of the tree-ring $\delta^{13}C$ rates, except for the period from 1970 to 1999. In this latter period, the decreasing rate of $\delta^{13}C_{atm}$ (-0.028%yr$^{-1}$) was higher than the mean rate for tree-ring $\delta^{13}C$ (-0.010%yr$^{-1}$) and outside the range defined by the SD of the tree-ring rates (± 0.014).

Figure S2 illustrates ^{13}C discrimination ratios ($\Delta \approx c_i/c_o$), the leaf intercellular CO$_2$ concentration (c_i) and iWUE inferred from $\delta^{13}C$ tree-ring data. Figure 3 shows that the most pronounced changes, when computing trends using 50-year intervals, were observed from 1950 to 1999. Thus, during the second half of the 20th century, three of the stands (prCaz, puPed and psUrb) kept constant c_i/c_o, which led to significant increases in c_i and improvements in iWUE. However, puUrb showed a significant increase in Δ, resulting in the
Table 4 Rates of changes per year in δ¹³Craw, ¹³C discrimination ratios (Δ), leaf intercellular CO₂ concentration (cₐ) and intrinsic water-use efficiency (iWUE) calculated using simple linear regression

<table>
<thead>
<tr>
<th>Period of time</th>
<th>δ¹³Craw/Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850-1899</td>
<td>-0.011 0.67</td>
<td>-0.008 0.36</td>
<td>-0.008 0.37</td>
<td>-0.014 0.54</td>
<td>-0.010 0.03</td>
<td>-0.008 0.08</td>
<td>-0.005 0.12</td>
<td>-0.010 0.26</td>
<td>-0.015 0.56</td>
<td>-0.021 0.55</td>
<td>-0.013 0.06</td>
</tr>
<tr>
<td>1900-1999</td>
<td>0.003 0.13</td>
<td>0.000 0.00</td>
<td>0.000 0.00</td>
<td>-0.008 0.02</td>
<td>0.003 0.05</td>
<td>0.009 0.24</td>
<td>0.003 0.02</td>
<td>0.002 0.03</td>
<td>0.006 0.03</td>
<td>0.021 0.46</td>
<td>0.001 0.06</td>
</tr>
<tr>
<td>1950-1999</td>
<td>-0.019 0.23</td>
<td>-0.026 0.24</td>
<td>-0.036 0.29</td>
<td>-0.005 0.02</td>
<td>0.000 0.01</td>
<td>0.018 0.04</td>
<td>-0.025 0.44</td>
<td>-0.006 0.03</td>
<td>0.002 0.03</td>
<td>0.016 0.03</td>
<td>0.002 0.01</td>
</tr>
<tr>
<td>1900-1999</td>
<td>0.063 0.02</td>
<td>0.070 0.02</td>
<td>0.067 0.03</td>
<td>0.074 0.02</td>
<td>0.070 0.02</td>
<td>0.069 0.02</td>
<td>0.064 0.02</td>
<td>0.069 0.02</td>
<td>0.067 0.02</td>
<td>0.069 0.02</td>
<td>0.069 0.02</td>
</tr>
<tr>
<td>1950-1999</td>
<td>0.14 0.21</td>
<td>0.022 0.18</td>
<td>0.046 0.34</td>
<td>0.018 0.04</td>
<td>0.004 0.01</td>
<td>0.001 0.00</td>
<td>0.022 0.34</td>
<td>0.018 0.04</td>
<td>0.004 0.01</td>
<td>0.001 0.00</td>
<td>0.001 0.00</td>
</tr>
<tr>
<td>1970-1999</td>
<td>0.40 0.37</td>
<td>0.34 0.20</td>
<td>0.18 0.04</td>
<td>0.02 0.01</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.02 0.01</td>
<td>0.018 0.04</td>
<td>0.004 0.01</td>
<td>0.001 0.00</td>
<td>0.001 0.00</td>
</tr>
</tbody>
</table>

The slopes of the linear regressions are the rates of change per year (Rates), R² is the coefficient of determination and the significance levels are indicated by **P < 0.01 and *P < 0.05.
lowest iWUE increase observed, whereas psLil showed a significant decrease in Δ that lead to the greatest increase in iWUE for this time period.

Table 4 shows that all sites experienced significant increases in ci and iWUE since the preindustrial period, either since 1850 or 1900, although larger increments were observed since 1950, and even more since 1970. The largest increment in iWUE for all sites, from 1970 to 1999, derived from the significant lowest D rates at three of the sites and constant D rates at the Urbio´n sites (psUrb and puUrb). The mean over all sites for this period for D was \(-0.018 \pm 0.014\%\) yr\(^{-1}\), for \(c_i\) 0.46 \(\pm 0.23\) ppm yr\(^{-1}\) and for iWUE 0.63 \(\pm 0.14\) µmol mol\(^{-1}\) yr\(^{-1}\).

The \(\delta^{13} C_c\) series temporal variations

The temporal variations in \(\delta^{13} C_c\) chronologies can be used to assess if trees are responding in an active or passive way to \(c_i\). Figure 2 shows the \(\delta^{13} C_c\) chronologies, obtained after applying the atmospheric \(\delta^{13} C\) correction, and the \(\delta^{13} C_{\text{pin}}\) chronologies, obtained after applying first the atmospheric \(\delta^{13} C\) correction and then the PIN correction, which theoretically removes physiological changes due to \(c_i\) increases. The boundaries defined by the two logical constraints based on the physiological response of trees according to the PIN correction are also depicted in this figure. Most of the \(\delta^{13} C_c\) chronologies appeared to be close to the upper boundary (constant \(c_i/c_a\)), showing an active response to \(c_a\), with the exception of puUrb, which was close to the lower boundary (constant \(c_a/c_i\)) and displayed a passive response to \(c_i\).

Spatial correlations with the \(\delta^{13} C\) corrected series

Both kinds of corrected \(\delta^{13} C\) tree-ring chronologies were used to perform spatial correlations with monthly mean temperature and total precipitation data from the CRU TS 2.1 gridded climate data from 29.75 to 50.25°N in latitude and from 11.75°W to 19.75°E in longitude.

Fig. 3 Temporal changes for 50-year time intervals in \(\delta^{13} C_{\text{atm}}\), \(\delta^{13} C\) discrimination ratios (\(\Delta \approx c_i/c_a\)), leaf intercellular CO\(_2\) concentration \((c_i)\) and intrinsic water-use efficiency (iWUE) at the studied stands. All the rates of change per year (slopes of the linear regression fitted to the data) are plotted, but only colored when significant (\(P<0.01\)).
Significant relationships were found predominantly during summer and early autumn, although the strongest individual monthly correlations varied slightly at each location (results not shown). Figure 4 summarizes these results and illustrates the months with the highest spatial correlations between temperature and the corrected \(\delta^{13}C \) chronologies (\(\delta^{13}C_c \) and \(\delta^{13}C_{pin} \)) for each site. These months were from June to October (JJASO) for \(pn \)Caz, \(pu \)Ped and \(ps \)Urb; and from July to August (JA) for \(ps \)Lil and \(pu \)Urb. In all the cases, after applying the PIN correction, the maximum correlation coefficient \((r_{Max}) \), the mean correlation coefficient \((r_{Mean}) \) and the extension of the areas showing significant positive correlations with temperature represented by the number of grid points or pixels \((N_{pixel}) \) were higher. It is remarkable that \(pn \)Caz, \(ps \)Urb and \(pu \)Urb, the driest sites, presented nonsignificant or very low correlation in the vicinity of the sampling area when only the atmospheric correction was used \((\delta^{13}C_c) \). However, significant correlations appeared over the Iberian Peninsula after applying the PIN correction \((\delta^{13}C_{pin}) \) at those sites. Additionally, Fig. S1 shows that the water availability gradient characterized by summer VPD at four of the sites is better defined when using \(\delta^{13}C_{pin} \) chronologies instead of the \(\delta^{13}C_c \) or \(\delta^{13}C_{raw} \) series. The spatial correlations with precipitation showed predominantly the highest negative correlations with July at all sites (results not shown). However, all metrics were lower in comparison with the results obtained using temperature, and after applying the PIN correction correlations did not change significantly.

The effect of the ‘preindustrial’ (PIN) correction

Figure S3 shows the expected negative relationships between the \(\delta^{13}C_{raw} \) chronologies and \(c_a \) increase since 1850. After applying the atmospheric correction (Fig. 5), two of the \(\delta^{13}C_c \) chronologies \((pn \)Caz and \(pu \)Urb) still kept a significant negative relationship with \(c_a \), whereas some series presented no significant trends \((ps \)Urb) or significant positive relationships \((ps \)Lil). Since 1970 positive trends were observed in three of the sites \((pn \)Caz, \(ps \)Lil and \(pu \)Ped). Figure S4 illustrates that after using the PIN correction none of the \(\delta^{13}C_{pin} \) chronologies showed a significant negative trend against \(c_a \), presenting positive relationships at all the sites. The most dramatic changes were observed in \(pu \)Urb, where the significant negative trends obtained using the \(\delta^{13}C_c \) series were replaced by significant positive ones, particularly since 1970. Figure 6 plots the \(\delta^{13}C_{pin} \) chronologies vs. time, showing the same significant trends as observed vs. \(c_a \).

Trends in \(\delta^{13}C_{pin} \) chronologies and mean temperatures

Figure 7 shows the mean temperature trends from the closest grid point at each site (Table 1) for the months for which the most significant relationships were found with the \(\delta^{13}C_{pin} \) chronologies. These temperature trends are in agreement with the trends reported in the \(\delta^{13}C_{pin} \) chronologies (Fig. 6). The \(pn \)Caz \(\delta^{13}C_{pin} \) series displayed a significant positive trend since 1970 in agreement with the significant 1970 upward JJASO temperature trend,
which showed the largest trends, with both 1970 regressions being significantly different from the previous periods. Significant positive trends (since 1901, 1950 and 1970) were shown by the \(\delta^{13}C \) pin chronology and the July–August temperatures near this site, but the difference between the 1950 and 1970 trend was not significant in either case. The \(\delta^{13}C \) pin series and nearby JJASO temperatures also shared significant positive trends after 1901 and 1970, and the difference between the 1950 and 1970 trends was significant in both cases. The \(\delta^{13}C \) pin and July-August temperature showed the highest increasing rate since 1970, significantly different from the other periods. At this grid point, the 1970 JJASO temperature trend was also significantly different from the others, but with lower increasing rate since 1970 than July–August temperature considered alone, as well as similar \(R^2 \) values than the 1901 trend.

Tree growth

Figure 8 (left column) shows the ring-width frequencies from 1950 to 1999 in comparison with those prior to
1950, since 1600 for psCaz, psLil, psPed, and since 1800 and 1900 for psUrb and puUrb, respectively. A higher frequency of narrow rings during the second half of the 20th century was found at all the stands in comparison to the frequencies calculated for the previous centuries, except for psLil. The Kolmogorov–Smirnov test (Table S1) and the CDF plots (Fig. 8, right column) demonstrate that RW distribution before and after 1950 are significantly different. All sites show a significant shift toward narrower rings after 1950, with the exception of psLil, which has wider rings after 1950. However, all sites show significantly narrower rings after 1970 (Fig. S5; Table S1). Figure S6 shows the means of the raw RW data before and after selection with the criteria described above (see ‘Material and methods’). This figure indicates that the filters applied to select the raw RW data worked well for the long chronologies (psCaz, psLil and puUrb), effectively eliminating the age trends. The youngest chronologies (psUrb and puUrb) showed clearly higher growth rates during the first years of the selected RW data, and it is therefore difficult to ensure entirely the effectiveness of the filtering method in these shorter series.

Figure 9 illustrates the trends of the selected RW data vs. time. It is noteworthy that almost all of them were negative. psCaz RW showed decreasing rates since 1850 and increasing rates after 1950. psLil RW showed significant decreasing trends after 1950 and 1970; and psPed RW since 1850, 1901 and 1950, with higher declining rates in the two latter periods. The decreasing trends in psUrb RW were significant since 1850, 1901, 1950 and 1970, the latter showing the highest rates of decline. puUrb only showed significant negative trends after 1901. Figure S7 shows ring-width frequencies using the same data set for the periods 1850–1900, 1901–1949, 1950–1969 and 1970–1999, excluding the first period for puUrb due to the lack of data. psCaz showed a higher frequency of narrow rings during the second half of the century than previously, but the rings since 1970 were not notably narrower than for the period 1950–1969. psLil did not show a clear distribution, but wider rings were observed during the brief interval from 1950 to 1969. In contrast, psPed clearly shows a higher frequency of narrow rings after 1950, and especially after 1970. psUrb and puUrb have narrower rings since 1950 in comparison with the preceding periods, although puUrb ring widths do not noticeably decline further after 1970.

Discussion

Site locations and climatic regimes

Each site is under a different climatic regime due to their geographical location in the Iberian Peninsula. This results in different combinations of Atlantic and Mediterranean atmospheric circulation patterns, and different degrees of continentality. The location of the stands in mountainous ranges at different altitudes and aspects is also an important factor with a considerable influence on the final water balance at each site. In this context, the δ13C values of the studied stands reflect a
water availability gradient well defined by the VPD, except for psUrb. The differences found in the δ^{13}C ratios between the two sites of the Uribión range indicate the importance of site and stand features. The puUrb stand is in an open forest with closed areas over a rocky, shallow and well-drained soil at 1950 m asl facing to the southwest; whereas psUrb is a closed forest stand growing in a deep, partially drained soil located at a lower altitude (1750 m asl) facing towards the north-east. Thus, the overall lower psUrb δ^{13}C values could be explained by a canopy closure effect on intercepting radiation by shading (Francey & Farquhar, 1982) or to more depleted CO$_2$ respired from low growing plants and the soil (Schleser & Jayasekera, 1985). A dampening of the climatic signal due to a deeper soil or a more humid microclimate as a consequence of the northeast aspect could be reasons for this site deviating from the water availability gradient followed by the rest.

Physiological implications of the isotope trends

All δ^{13}C tree-ring series decreased, following the declining trend in the δ^{13}C of the atmospheric CO$_2$ related to the Suess effect. The most pronounced changes were observed mainly during the second half of the 20th century and differed between stands. Since 1950, the c_i/c_a ratios were constant at three sites, while one had a negative and another a positive trend. These observations are in agreement with Feng’s (1998) findings in western North America, where c_i/c_a of trees remained predominantly constant before the 20th century, but changed with varied signs during the 20th century. In
by which the increase in three different scenarios that mainly differ in the degree and the regression since 1970 (text in red), as a result of one-way significant difference from the regressions since 1950 (text in black) between the 1950 and the 1970 regressions.

2011 Blackwell Publishing Ltd, Global Change Biology

increases proportional to iWUE constant. The

increases at the same rate as cₕ decreases a
c/₂ increase, indicating that other factors are reinforcing the stomatal closure in the trees of this forest. In agreement, several other papers have also reported a decrease in Δ with an even stronger enhancement in iWUE (Peñuelas & Azcón-Bieto, 1992; Bert et al., 1997; Duquesnay et al., 1998; Hiertz et al., 2005).

The puUrb relict forest showed a significant increase in the cᵢ/cₕ ratio that resulted in the lowest iWUE increase of those observed. This finding illustrates and agrees with scenario 3 discussed by Saurer et al. (2004) that, although no iWUE improvements should be expected theoretically, iWUE was often increased on real data. This suggests a very weak stomatal response to cₕ increase and, in agreement, the δ¹³Cₕ chronology displayed a passive response to cₕ changes (McCarroll et al., 2009). The reduction in the puUrb sensitivity to cₕ could be interpreted as a ‘saturation effect’ (Waterhouse et al., 2004). This relict forest of P. uncinata could be less reactive due to its location at the western limit of its phytogeographical distribution, perhaps more vulnerable to environmental changes than forests growing in the main core of their distribution range. Similarly, a slower increase in iWUE was detected in lower elevation populations of Abies pinsapo, a relict species located in southern Spain, than in the higher elevation stands growing in a more favorable environment that might be less susceptible to environmental changes (Linares et al., 2009).

The patterns after 1970 are different and merit further interpretation. The decline of the δ¹³C rates was lower than the δ¹³C atm decline rate. As a consequence, all studied stands showed the highest iWUE of all time periods derived from the lowest Δ rates (significant decreases for pnCaz, psLil and puPed; nonsignificant trends in the Urbión sites). It seems that other environmental factors reduced the stomatal conductance since

a more theoretical context, Saurer et al. (2004) proposed three different scenarios that mainly differ in the degree by which the increase in cᵢ follows the increase in cₕ: (1) cᵢ constant → cᵢ/cₕ decreases → iWUE increases; (2) cᵢ increases proportional to cₕ → cᵢ/cₕ constant → iWUE increases; (3) cᵢ increases at the same rate as cₕ → cᵢ/cₕ increases → iWUE constant.

In this study, the three sites with constant cᵢ/cₕ ratios (pnCaz, puPed and psUrb) had significant increases in cᵢ and improvements in iWUE. According to theory, this illustrates scenario 2, the most common reaction reported for conifers in Eurasia (Saurer et al., 2004), and in agreement δ¹³Cₕ chronologies displayed an active response to cₕ changes (McCarroll et al., 2009). cᵢ/cₕ reflects gas exchange and integrates the response of plants to environmental changes (Ehleringer & Cerling, 1995). Constant cᵢ/cₕ may indicate tree adaption to cₕ increases and could be attained by a simultaneous decrease of both stomatal conductance and photosynthetic rates (Saurer et al., 2004). A constant Δ pattern was also found in P. edulis from the southwestern United States along a summer monsoon gradient (Williams & Ehleringer, 1996).

At psLil, the northernmost studied stand, a significant decrease in cᵢ/cₕ resulted in the greatest iWUE improvement, following scenario 1 (Saurer et al., 2004). The δ¹³Cₕ chronology exceeded the expected values due to an active tree response to cₕ increase, indicating that other factors are reinforcing the stomatal closure in the trees of this forest. In agreement, several other papers have also reported a decrease in Δ with an even stronger enhancement in iWUE (Peñuelas & Azcón-Bieto, 1992; Bert et al., 1997; Duquesnay et al., 1998; Hiertz et al., 2005).

The puUrb relict forest showed a significant increase in the cᵢ/cₕ ratio that resulted in the lowest iWUE increase of those observed. This finding illustrates and agrees with scenario 3 discussed by Saurer et al. (2004) that, although no iWUE improvements should be expected theoretically, iWUE was often increased on real data. This suggests a very weak stomatal response to cₕ increase and, in agreement, the δ¹³Cₕ chronology displayed a passive response to cₕ changes (McCarroll et al., 2009). The reduction in the puUrb sensitivity to cₕ could be interpreted as a ‘saturation effect’ (Waterhouse et al., 2004). This relict forest of P. uncinata could be less reactive due to its location at the western limit of its phytogeographical distribution, perhaps more vulnerable to environmental changes than forests growing in the main core of their distribution range. Similarly, a slower increase in iWUE was detected in lower elevation populations of Abies pinsapo, a relict species located in southern Spain, than in the higher elevation stands growing in a more favorable environment that might be less susceptible to environmental changes (Linares et al., 2009).

The patterns after 1970 are different and merit further interpretation. The decline of the δ¹³C rates was lower than the δ¹³C atm decline rate. As a consequence, all studied stands showed the highest iWUE of all time periods derived from the lowest Δ rates (significant decreases for pnCaz, psLil and puPed; nonsignificant trends in the Urbión sites). It seems that other environmental factors reduced the stomatal conductance since

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 2095–2112

Fig. 9 Trends in the selected ring-width (RW) raw data over time. Linear regressions plotted since 1850 (green), 1901 (grey), 1950 (black) and 1970 (red) only when significant (P<0.05). The P-value located next to the regression expression indicates significant difference from the regressions since 1950 (text in black) and the regression since 1970 (text in red), as a result of one-way analysis of covariance (ANCOVA). The P-value located in the right bottom corner indicates the significance of the difference between the 1950 and the 1970 regressions.
1970, making all δ^{13}C series more enriched in 13C than would be expected from merely following the declining trend in δ^{13}C$_{\text{atm}}$.

Physiological response to the c_a increases

After removing the low-frequency trends due to the theoretical tree physiological responses to c_a using the PIN correction (McCarroll et al., 2009), the climatic signal registered in all δ^{13}C series was enhanced. It is noteworthy that puUrb, which showed a passive response to c_a, subsequently increased following the correction and revealed the highest improvements in the temperature signal: it changed from largely insignificant and even negative responses to significant positive relationships with summer temperatures over the Iberian Peninsula. The driest sites (puCaz and Urbión stands) showed greater improvement than the wettest (psLil and puPed), suggesting that the PIN correction is more effective at separating the climatic and physiological trends at drier sites. The PIN correction could be more useful at the driest sites because this method is based on the response of stomatal conductance to increased c_a. δ^{13}C at the driest sites is supposed to be more regulated by stomatal conductance (related to air relative humidity and antecedent rainfall) than at the wettest sites, where δ^{13}C is expected to be more influenced by photosynthetic rates (related to temperature and photon flux); (McCarroll & Pawellek, 2001).

Our results demonstrate that there is a physiological response to c_a changes at each forest site, modulating the δ^{13}C ratios and contributing to the difference observed in the iWUE trends.

Furthermore, the PIN correction is confirmed as an effective tool for extracting climatic information recorded in δ^{13}C tree-ring data, and thus can be very useful in paleoclimatic research for improving the reliability of climate reconstructions using this proxy.

The well-known and extensively used atmospheric correction used to remove the Suess effect from the δ^{13}C$_{\text{raw}}$ chronologies was not sufficient to compensate for the decline in the δ^{13}C$_{\text{c}}$ series vs. c_a when the trees showed a passive response to c_a increase. The PIN correction successfully handled these declining trends, revealing δ^{13}C$_{\text{pin}}$ chronologies with positive trends. These positive trends, in some cases indeed shared with the δ^{13}C$_{\text{c}}$ series, cannot be caused by changes in c_a according to the second logical physiological constraint from McCarroll et al. (2009). The theory postulates that the iWUE improvements as a product of rising c_a are limited to keep a steady c_l/c_a ratio (active response), guaranteeing that any δ^{13}C rise beyond maintaining a constant c_l/c_a ratio is not eliminated. Therefore, the upward trends observed in the δ^{13}C$_{\text{pin}}$ chronologies throughout time are very likely to be caused by another environmental factor than c_a.

Temporal changes in the climatic constraints

The spatial correlation fields showed a clear relationship between the δ^{13}C$_{\text{pin}}$ chronologies and mean seasonal temperature from the gridded CRU TS 2.1 data. The months showing the highest correlations (JJASO for puCaz, puPed and psUrb; July–August for psLil and puUrb) were in agreement with the response functions developed by Andreu et al. (2008), using a Spanish gridded data set (25×25 km grid box) created by the ‘Instituto Nacional de Meteorología’ (INM). Mean temperatures play an important role in the δ^{13}C ratios at the studied sites and could therefore plausibly be the driver of the increases in the δ^{13}C values not explained by the rise in c_a leading to lower Δ rates and the highest improvements in the iWUE.

The stomatal conductance is strongly influenced by VPD, which can be considered a driving force for transpiration. Thus, an increase in VPD could be linked to temperature increases and/or precipitation decreases, reducing stomatal conductance. The results of this work did not show any clear precipitation pattern, but a good and logical agreement between the trends in mean temperature and δ^{13}C series was found. This indicates that the upward trends in temperature are linked to the VPD at the studied sites, reinforcing our hypothesis that temperature is significantly influencing stomatal closure (less Δ), increasing the δ^{13}C ratios and, as a consequence, increasing the iWUE. However, stomatal closure may constrain photosynthesis and plant production when water availability in the soil is reduced and VPD is elevated (Smith, 1989). This is supported at a larger scale by satellite observations showing that ‘a warming climate does not necessarily lead to higher CO$_2$ growing-season uptake’ (Angert et al., 2005).

Tree growth

For puCaz, narrower rings since 1950 and 1970 (compared to the widths from previous centuries) and a slightly significant decreasing trend since 1850 were found. However, a further decline in growth was not detected after 1970 in agreement with a stable mean growth reported in a nearby stand of the same species (Linares & Tiscar, 2010). Although for psLil some wider rings were found after 1950 in comparison to preceding time periods, significantly narrower rings were detected after 1970 and significant declining growth trends observed since 1950 and 1970. This Cantabrian site also presented the highest iWUE rates, which might have
briefly ameliorated potential growth declines from 1950 to 1969. However, since 1970 increases in iWUE seem to be insufficient to compensate for environmental stress. On the other hand, ps_Ped has undoubtedly narrower rings during the second half of the 20th than in the former centuries, particularly after 1970. In agreement, declining growth trends were shown since 1850, 1901 and 1950, demonstrating the high sensitivity to climate changes at this pre-Pyrenees high altitude site. Both Urbión sites had narrower rings since 1950, especially since 1970 for ps_{Urb}, and accordingly significant declines in growth trends.

Overall our results reveal declines in growth and narrower rings during the second half of the 20th century at four sites and after 1970 at all sites. However, due to the nature of our data and the approach used, these interpretations require some caution. Although age trends are not very likely to remain in tree-ring data after 150 years, the higher growth rates at the beginning of the shorter series raise some concern on the efficiency of the age trend removal at the youngest stands. In contrast to the trends observed in Bristlecone pines (Salzer et al., 2009), the observed trend in the studied Iberian pine forests were in the same direction as a trend that could reflect tree age. A negative relationship between lifespan of trees and their growth rates reported for other species (Larson, 2001; Black et al., 2008) should also be taken into account. Our results provide no evidence for a fertilization effect on tree growth as a consequence of the c_a increase. Rather, we observed an overall growth decline. In the context of the widespread growth increase recently reported at temperate deciduous forests without water limitations (McMahon et al., 2010), no evidence for an increase in growth at the more moisture stressed Mediterranean pine forests is a very relevant conclusion.

Ecological consequences of the observed patterns

Considering that iWUE rates depend on assimilation (A) and stomatal conductance (g), the observed enhancement in iWUE could be due theoretically to an increase in A, a decrease in g, or both. However, no evidence of growth increase is seen at four of the sites during the second half of the 20th century, and not at any site after 1970. This suggests that there is no evidence to support an increase in A, indicating that a reduction in g is most likely responsible for the observed iWUE patterns. We demonstrated that among the causes of this reduction in g are the global rise in c_a, causing a direct physiological response at each stand, as well as the reported changes in climate. Especially since the last decades of the 20th century, warmer conditions seem to be causing an increase in VPD. This would reduce g, leading to higher δ^{13}C values (lower Δ rates), and therefore higher iWUE than would be expected solely as a result of changes in c_a

Our results agree with previous findings in the Iberian Peninsula. An enhancement in iWUE did not ameliorate the decrease in growth produced by warming at low elevation stands in the Fagus sylvatica southern distribution limit (Peñuelas et al., 2008). Additionally, iWUE increases and basal area increment (BAI) declines were observed at low altitude Abies pinsapo populations in the south of Spain where water availability decreased during the last 30 years (Linares et al., 2009). Increases in iWUE and BAI declines were also reported at a dense P. nigra afforestation in the Iberian Peninsula (Martin-Benito et al., 2010). Ferrio et al. (2003) reported that P. halepensis and Quercus ilex showed iWUE enhancements as a result of a reduction in water availability. The intensification of warming in a longer term could affect the trees more sensitive to drought, as seen during the severe drought that occurred in Catalonia in 1994, causing a canopy dieback in Quercus ilex (Lloret et al., 2004) and even mortality in some populations of P. sylvestris (Martínez-Vilalta & Piñol, 2002).

The term of ‘physiological forcing’ defined the influence of a reduction in plant transpiration in climate (Gagen et al., 2011). This reduction in evapotranspiration could affect hydrological budgets by increasing warming near surfaces (Betts et al., 2000). Hence, a vegetation–climate feedback reducing canopy evapotranspiration in the Spanish forests can potentially alter energy and moisture transport between the surface and the atmosphere (Betts et al., 2000). The consequences of lower conductance in the Iberian Peninsula, surrounded by the Mediterranean sea in the East and the Atlantic Ocean in the West, might be climatically less critical than in more continental areas where a high part of precipitation is generated by transpiration (Saurer et al., 2004), but is still relevant for the land surface schemes of general circulation models that demand a precise representation of plant transpiration (Gagen et al., 2011).

Conclusions

An enhancement in iWUE was observed at all the sites during the last decades of the 20th century, and was related to changes in c_a and climate. The c_a rise provoked particular physiological responses at each site. Less water availability due to the upward trends observed in mean temperatures may produce a reduction in the stomatal conductance, leading to higher iWUE than would be expected from changes in c_a alone. Our findings do not support any sustained increase in tree growth due to a CO_2 fertilization effect during the
second half of the 20th century. Indeed, iWUE improvements seem to be insufficient to compensate for the negative effects of the reduced water availability on growth. A reduction in forest productivity due to water limitations could have serious implications regarding the degree of carbon sequestration by the Iberian forests, affecting the terrestrial biosphere carbon cycle. More research in natural forests of different regions worldwide is needed for a better understanding of how mature forests react under natural conditions to recent environmental changes. Our work renders new insights regarding the response to changes in c_a and climate in terms of tree physiology ($\delta^{13}C$) and growth (ring width) at five sites of three different tree species in the Iberian Peninsula.

Acknowledgements

We are very grateful to Oriol Bosch, Montse Ribas, Pitter Ferrio, Jordi Voltas, Pedro Antonio Tiscar, Heinz Vos, Benjamin I. Cook and Ken Peters for their help at some point during sampling, laboratory work and manuscript preparation, as well as the two anonymous reviewers for very helpful comments and suggestions. The primary data and preliminary results were obtained at the University of Barcelona, whereas the data analysis and the writing of the manuscript has been performed at Lamont-Doherty Earth Observatory of Columbia University during the last year. This research was funded by the EU project ISONET (Contract EV K2-2001-00237) and the EU FPs project Millennium (GOCE 017008). This is LDEO Contribution #7421.

References

Leavitt SW (2008) Tree-ring isotopic pooling without regard to mass: no difference from averaging $\delta^{13}C$ values of each tree. Chemical Geology, 252, 52–55.

Lienert JC, Delgado-Faustino A, Julio Camarero J, Morion J, Carreiva J (2009) Competition and drought limit the response of water-use efficiency to rising atmo-

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Results of the Kolmogorov-Smirnov tests. H indicates the result of the test: H = 0 (Do not reject the null hypothesis), H = 1 (Reject the null hypothesis at significance level of alpha). The null hypothesis is that empirical cumulative distribution functions (CDF) are equal, while the alternative hypothesis is ‘unequal’ CDFs. Additionally, whether RW data after 1950 or after 1970 has a ‘larger’ or ‘smaller’ CDF than before 1950 were also tested. Note that a ‘larger’ CDF corresponds to a major number of narrow rings, whereas ‘smaller’ corresponds to a high number of wide rings.

Figure S1. $\delta^{13}C_{\text{raw}}$ (above), $\delta^{13}C_{c}$ (middle), $\delta^{13}C_{\text{pin}}$ (below) data vs. June to August (JJA) temperature (T), precipitation (P) and vapor pressure deficit (VPD) from 1901 to 1999.

Figure S2. Yearly values of 13^C discrimination ratios ($\Delta = c_i/c_a$), leaf intercellular CO$_2$ concentration (c_i) and intrinsic water-use efficiency (iWUE) inferred from $\delta^{13}C_{\text{raw}}$ tree-ring data at all the studied stands. The $\delta^{13}C_{\text{c}}$ chronologies (grey line) and the $\delta^{13}C_{\text{pin}}$ chronologies (yellow line) are also depicted. The limits defined by the two physiological tree response constraints are shaded: upper boundary (constant c_i/c_a, active response to c_a) and lower boundary (constant c_a/C_0, passive response to c_a).

Figure S3. Trends in the $\delta^{13}C_{\text{raw}}$ chronologies vs. the atmospheric CO$_2$ concentration (c_a). Linear regressions plotted since 1850 (green), 1901 (grey), 1950 (black) and 1970 (red) only when significant ($P < 0.05$).

Figure S4. Trends in the $\delta^{13}C_{\text{pin}}$ chronologies vs. the atmospheric CO$_2$ concentration (c_a). Linear regressions plotted since 1850 (green), 1901 (grey), 1950 (black) and 1970 (red) only when significant ($P < 0.05$).

Figure S5. Left: Ring-width frequencies from 1970 to 1999 in comparison with the frequencies prior to 1950, since 1600 for p_{nCaz}, p_{3Lil}, p_{uPed}, and since 1800 and 1900 for p_{sUrb} and p_{uUrb}, respectively (n indicates the number of trees for each group). Right: Empirical cumulative distribution function (CDF) for each group of ring-width data at each site.

Figure S6. Mean of the ring-width (RW) raw data for all samples and mean after removing the first 150 years from all the series (selected samples). The first number after n indicates the total amount of samples, whereas the second number shows the amount of the selected samples.

Figure S7. Ring-width frequencies for the periods 1850–1900, 1901–49, 1950–69 and 1970–99 at all the studied forests, except for p_{uUrb} where the former period is not shown (n indicates the number of trees for each group).

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.